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Abstract—We developed noninvasive brain-to-brain interface
for dynamical redistribution of cognitive load between subjects
according to their current performances during shared cognitive
task. As a result, a participant who exhibits higher cognitive
performance is subjected to a higher workload, while his/her
partner receives a lower workload. We demonstrate that dynam-
ical workload redistribution allows to increase overall cognitive
performance in the pair of interacting subjects.

Index Terms—electroencephalogram, brain-to-brain interface,
cognitive performance, cognitive load, cognitive resource

I. INTRODUCTION

Complex cognitive task requires to involve neuronal popu-
lations in the different cortical regions [1]. During the accom-
plishment of a prolonged and resource-demanding task the
neuronal populations need to maintain cognitive performance
at a certain level to ensure high behavioral performance.
As the result, such demanding tasks cause mental fatigue
accompanied by subjective feeling of exhaustion and cognitive
decline [2]. Along with the fatigue, the cognitive performance
can be defined by the human personality [3], the initial
motivation [4], training effect [5] and the task complexity.
Many of these features can be evaluated through analysis of
electric brain activity, thus opening opportunity to estimate
cognitive performance. This underlies the possibility of the
passive brain-computer interfaces for the cognitive activity
evaluation and training [6].

In the present work we demonstrate that the cognitive per-
formance during the visual classification task accomplishing
can be increased due to the cognitive interaction with another
human via a brain-to-braininterface (BBI) [7]. Using the BBI
we analyze the cognitive interaction between the partners
subjected to the visual classification task. Having compared
the experimental sessions with different interaction protocol
we report the most optimal interaction configuration resulting
in the increase of the cognitive performance.

II. METHODS

20 healthy unpaid volunteers, 12 males and 8 females,
between the ages of 20 and 43 with normal or corrected-to-
normal visual acuity participated in the experiments. All of
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them provided informed written consent before participating.
The experimental studies were performed in accordance with
the Declaration of Helsinki.

The cognitive task was to classify the consistently presented
ambiguous Necker cubes [8]. We used two subsets: the cubes
of the high complexity of interpretation (HC) for g ∼ 0.5 and
the cubes of low complexity of interpretation (LC) for g ∼ 0
and g ∼ 1. During the experimental session, the Necker cubes
with the randomly chosen ambiguity were presented for 300
times. The presentation time was in range of 1-1.5 sec with
the pause between presentations of 3-5 s.

To register the EEG data, we used electroencephalograph
“Encephalan-EEG-19/26” with cup adhesive Ag/AgCl elec-
trodes placed on the “Tien–20” paste. The EEG signals were
filtered by a band-pass filter with cut-off points at 1 Hz (HP),
as well as a 100 Hz (LP) and a 50-Hz Notch filters. The

Similarly to the recent work [9], we analyze the EEG signals
recorded by five electrodes (O1, O2, P3, P4, Pz) placed on the
standard positions of the ten-twenty international system, using
the continuous wavelet transform [10].

Each event associated with the presentation of a single
visual stimulus is analyzed separately in the alpha and beta
frequency bands on a 1-sec interval preceding the presentation
and followed by the moment of the stimulus appearance. A
special digital trigger is sent by the software together with the
presentation of the stimuli initiated the calculation.

As a result, the set of values A1
i , A2

i , B1
i , B2

i characterizing
the stimulus-related brain response in the α (8-12 Hz) and β
(15-30 Hz) frequency bands are calculated for i-th presentation
as

A1,2
i =

N∑
n=1

∫
t∈τ1,2

i

σnα(t′)dt′, (1)

B1,2
i =

N∑
n=1

∫
t∈τ1,2

i

σnβ (t′)dt′, (2)

where
σnα(t) =

{
1, if fnmax ∈ ∆fα,
0, if fnmax /∈ ∆fα.

(3)

and
σnβ (t) =

{
1, if fnmax ∈ ∆fβ ,
0, if fnmax /∈ ∆fβ ,

(4)
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where n (N = 5) is the number of EEG channels and fnmax
is the location of the maximal spectral component.

The control characteristic H(i) is calculated by averaging
A1,2
i and B1,2

i values over 6 presentations.
The value of H(i) calculated in real time, reflects the

intensity of the brain response on the appearing visual stimuli.
Large H(i) is associated with a high response due to more
careful image processing by the subject, whereas small H(i)
is associated with a low response, which takes place when the
subject does not pay much attention on the classification task.

The values H1,2 characterizing the cognitive performance of
the subjects were compared at every moment. If the cognitive
performance H1 of the subject 1 exceeds the cognitive perfor-
mance H2 of the subject 2, the subject 1 gets the stimuli with
high ambiguity, whereas the subject 2 gets the stimuli with
low ambiguity.

III. RESULTS

The subject’s cognitive performance has been measured
based on the brain-response amplitude H (see methods).
The larger values of the brain response amplitude have been
associated with high cognitive performance and vice versa.
The mean cognitive performance has been calculated as H ,
averaged over the experimental session.

The subjects participated in two experiments consisting
of two sessions. In the first sessions, each participant was
subjected to the whole set of stimuli. In the second session,
the stimuli with different ambiguity (the cognitive load) were
distributed according to the subjects’ cognitive performances.
The structure of the second session was different in the exper-
iment 1 and experiment 2. In the experiment 1 the cognitive
load was redistributed based on the comparison of the instant
values of the cognitive performance. In the experiment 2 the
cognitive load redistribution was performed by comparing the
cognitive performances averaged over the certain time interval
t0. Following our work [7], the time interval length was
specified as one associated with the presentation of 20 stimuli.

The cognitive performances of interacting subjects were
compared between the different sessions. As the result, the
cognitive performances of both subjects did not differ for the
first session of experiment 1 and experiment 2 (p > 0.05 via
paired samples t-test). For the second session we observed
the significant increase of the cognitive performance (mean in
pair) in the second experiment when compared with the first
experiment (∗p < 0.05 via paired samples t-test). The obtained
result demonstrates that the cognitive load redistribution is
more active when performed based on the comparison the
averaged cognitive performances.

IV. CONCLUSION

The recent studies report that the cognitive performance
during the cognitive task accomplishing is not maintained at
a constant level but fluctuates in time. During the prolonged
cognitive task accomplishing the mean value of the cognitive
performance is determined by the cognitive resource. Since the
cognitive resource is limited, the cognitive performance cannot

be enhanced immediately and requires a systematic training. In
this context, the present work demonstrates that the cognitive
performance can be also increased as the result of cognitive
interaction via the BBI enabling the cognitive load distribution
across the subjects.

V. ACKNOWLEDGMENTS

This work has been supported by Russian Foundation for
Basic Research (Grants 18-32-20129 and 19-32-60033) and
by the President’s Program (Project NSH-2737.2018.2).

REFERENCES

[1] V. V. Makarov, M. O. Zhuravlev, A. E. Runnova, P. Protasov, V. A. Mak-
simenko, N. S. Frolov, A. N. Pisarchik, and A. E. Hramov, “Betweenness
centrality in multiplex brain network during mental task evaluation,”
Physical Review E, vol. 98, no. 6, p. 062413, 2018.

[2] K. Mizuno, M. Tanaka, K. Yamaguti, O. Kajimoto, H. Kuratsune, and
Y. Watanabe, “Mental fatigue caused by prolonged cognitive load asso-
ciated with sympathetic hyperactivity,” Behavioral and brain functions,
vol. 7, no. 1, p. 17, 2011.

[3] V. A. Maksimenko, A. E. Runnova, M. O. Zhuravlev, P. Protasov,
R. Kulanin, M. V. Khramova, A. N. Pisarchik, and A. E. Hramov,
“Human personality reflects spatio-temporal and time-frequency eeg
structure,” PloS one, vol. 13, no. 9, p. e0197642, 2018.

[4] V. A. Maksimenko, A. E. Runnova, M. O. Zhuravlev, V. V. Makarov,
V. Nedayvozov, V. V. Grubov, S. V. Pchelintceva, A. E. Hramov, and
A. N. Pisarchik, “Visual perception affected by motivation and alertness
controlled by a noninvasive brain-computer interface,” PloS one, vol. 12,
no. 12, p. e0188700, 2017.

[5] V. A. Maksimenko, N. S. Frolov, A. E. Hramov, A. E. RUNNOVA,
V. V. Grubov, J. Kurths, and A. N. Pisarchik, “Neural interactions
in a spatially-distributed cortical network during perceptual decision-
making,” Frontiers in behavioral neuroscience, vol. 13, p. 220, 2019.

[6] T. O. Zander and C. Kothe, “Towards passive brain–computer interfaces:
applying brain–computer interface technology to human–machine sys-
tems in general,” Journal of neural engineering, vol. 8, no. 2, p. 025005,
2011.

[7] V. A. Maksimenko, A. E. Hramov, N. S. Frolov, A. Lüttjohann, V. O.
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