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ABSTRACT

Explosive synchronization represents an abrupt first-order transition to coherence in coupled dynamical systems, with significant implica-
tions for real-world networks such as neural systems, power grids, and social networks. In this study, we investigate explosive synchronization
in adaptive multiplex networks of an arbitrary number of layers with the coexistence of competitive and cooperative interlayer interactions,
where the dynamics of a node in one layer is influenced by the coherence of its counterparts in other layers. In addition to these inter-
layer interactions, our model incorporates interlayer adaptive coupling that can be simultaneously cooperative and competitive. Using a
generalized framework, we show that the fraction of competitive nodes fl within each layer critically impacts the synchronization dynamics.
Higher fractions suppress synchronization, while lower fractions promote the degree of synchronization transition. As the number of layers
increases, the hysteretic behavior associated with explosive synchronization becomes more pronounced, highlighting enhanced resilience in
synchronization transitions. The analytical predictions derived from the mean-field approach align closely with the numerical simulations
across networks with an arbitrary number of layers, validating the robustness of the proposed framework. This scalability across multiplex
networks underscores the critical role of adaptive interdependencies in shaping synchronization patterns. These findings provide a compre-
hensive understanding of how multiplex architectures govern the dynamics of explosive synchronization and provide insight into controlling
synchronization in complex systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0283789

From the discovery of explosive synchronization in dynamical
networks, it was believed that the correlation between the degree
of each node, coupling strength, and frequency of the Kuramoto
oscillators played a vital role in its emergence. Later, these restric-
tions were removed by introducing an adaptive network with
interdependent and competitive interactions. This work presents
an adaptive network where these two adaptive interactions work
simultaneously. Due to a fraction of interdependent and com-
petitive interactions, suppressing the formation of giant clusters
leads to a hysteresis loop for bistability. Then, we generalize the
phenomenon for multiplex networks with the arbitrary number

of layers. We analytically verify our results using the mean-field
approach.

I. INTRODUCTION

When an ensemble of oscillators interacts, increasing/
decreasing the coupling strength, a continuous and smooth tran-
sition is observed from an incoherent to a coherent state. This
transition type is known as a second-order phase transition.1,2 In this
transition, more oscillators join the coherent group by varying the
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coupling strength and, finally, become one coherent group. In some
cases, the transition from incoherent to coherent occurs suddenly
at a critical value of the coupling strength. This type of transition
is irreversible and not continuous, commonly known as a first-
order phase transition in statistical physics. In nonlinear dynamical
systems, the first-order transition is also known as explosive syn-
chronization (ES).3 Since its investigation4 in 2005, it has become
an exciting field of research due to its diverse significance in dif-
ferent fields, such as cascading collapse in power grid networks,5

neuronal spiking in the human brain,6 opinion dynamics in social
networks,7 internet jamming,8 etc. The ES is observed in complex
dynamical systems by introducing a correlation between the local
dynamics of the node, the degree of each node, and the coupling
strength. From its discovery, it was believed that any correlation
was required for the emergence of ES. The ES is characterized by
bistability behaviors in the hysteresis between the critical coupling
strengths of forward and backward transitions. Later, this ES is
also observed in different network topologies, such as multiplex
network,9 introducing time-delay coupling,10 dynamically dissimilar
multiplex networks,11 interlayer Hebbian plasticity,12,13 considering
higher-order interactions in networks,14,15 etc.

Recently, it was observed that ES could emerge by introducing
an adaptive controller by a local order parameter.16 The adaptation
in the coupling may be cooperative or competitive type, and differ-
ent synchronization phenomena are observed.17–19 Using an attrac-
tive and repulsive type adaptation, various kinds of ES are observed
in dynamic networks.20,21 The explosive transition from an incoher-
ent to a coherent state is explored in interdependent and competitive
interactions in multiplex networks. It discusses the variation of the
hysteresis region due to a mixed adaptive mechanism.22

In general, the interactions between dynamical systems occur
in two different ways, namely, interdependent (cooperation) inter-
actions and competitive (inhibition) interactions.23–25 In interdepen-
dent interactions, one node is influenced by the neighboring nodes
and is represented by multiplying the local order parameters with
the coupling strength and observed ES state.16 By increasing the
coupling strength, more oscillators join in the coherent group and
the system exhibits an abrupt transition from incoherent to coher-
ent states. On the other hand, repulsion between the nodes exists
through competitive interactions, which is usually seen between the
prey and predator in ecological systems,26 cooperator–defector in
the evolutionary game theory,27,28 etc. In some natural systems, both
the interactions co-occur, for example, simultaneous presence of
excitatory and inhibitory synaptic interactions between neurons,29,30

competitors and cooperators in sociology,31 and for the modeling of
biological32 and physical33 systems. Previously, the ES was observed
in multiplex networks with non-adaptive excitatory and inhibitory
layers.34 In another study, the ES is observed in an adaptive coupling
with a multiplex network configuration using interdependent inter-
actions only.16 Also, the coexistence of competitive and cooperative
interlayer interactions in a two-layer multiplex network has been
studied by Frolov et al.22 and Xie et al.,35 but it is assumed that the
replica nodes that are interconnected via the adaptive mechanism
are of the same type; they are both either cooperative or competitive
in the multiplex network model.

In this paper, we aim to address the following central questions:
Is it possible to observe ES in a multiplex network of coupled

oscillators where the interlayer interactions include not only simul-
taneous interdependent and competitive couplings but also mixed-
mode interactions—where one node exhibits cooperative behavior
while its counterpart in the interconnected layer displays competi-
tive behavior? How do these adaptive and heterogeneous interlayer
interactions influence the onset and nature of explosive synchro-
nization in such multiplex configurations?

To answer these questions, we consider a multiplex network of
an arbitrary number of layers, where the local order parameters of
the nodes in each layer control the adaptive mechanism. Here, we
choose a fraction f of the nodes in each layer so that we can divide
them into two groups, for instance, a competitive group that inhibits
the coupling strength and a cooperative group that enhances the
coupling strength, and they are adaptively controlled by the local
order parameter of the counterpart nodes of the remaining layers in
two ways. These fraction values, in general, might not be equal, so
by the proposed adaptive mechanism, the counterpart nodes can be
of the same type (either they are both cooperative or competitive)
or a different type (one cooperative and another competitive). We
show that ES emerges, indeed, when the value f is small enough, but
when its value is high, we see continuous and reversible phase tran-
sitions of the global order parameters of the layers. We also provide
the analytical treatments to verify the steady-state behavior of this
multiplex network model in the continuum limit.

II. ADAPTIVE MULTIPLEX NETWORKS WITH AN

ARBITRARY NUMBER OF LAYERS

To broaden and expand the study of ES in a bilayer mul-
tiplex network, which incorporates both interdependence and
competition,22 we examine a multiplex network with an arbitrary
number of layers (L), where each layer is characterized by a spe-
cific fractional value of competitive units. The dynamics of such a
network is governed by the following system of coupled differential
equations:

θ̇l,i(t) = ωl,i + λDl,i(t)

N
∑

j=1

A
[l]

ij sin(θl,j − θl,i), (1)

where i = 1, 2, . . . , N indexes the oscillators in each layer, l = 1,

2, . . . , L denotes the layer index, and A
[l]

ij represents the adjacency
matrix of the lth layer. If nodes i and j in the lth layer are con-

nected, A
[l]

ij = 1, and A
[l]

ij = 0 otherwise. Here, ωl,i is the natural
frequency of the ith oscillator in the lth layer and λ denotes the
coupling strength.

The key feature of this framework is the adaptive core Dl,i(t),
which determines the type of interaction, whether it is competitive
or interdependent between oscillators in the layers. The dynamics
of Dl,i(t) is influenced by the coherence of the remaining (L − 1)
replica nodes of the oscillator i in the other layers. For a fraction fl of
competitive nodes in the layer l, the adaptation function is given by

Dl,i(t) = 1 −
1

L − 1

∑

l′ 6=l

rl′ ,i(t), (2)
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where rl′ ,i(t) represents the amplitude of the local Kuramoto order
parameter of the ith oscillator in the layer l′. It is defined as

rl′ ,i(t)e
iφl′ ,i =

1

kl′ ,i

N
∑

j=1

A
[l′]

ij e
iθl′ ,j(t), i =

√
−1, (3)

where kl′ ,i =
∑N

j=1 A
[l′]

ij is the degree of the ith oscillator in the layer

l′. This formulation ensures that competitive nodes are negatively
influenced by the coherence in the other layers.

For the remaining fraction (1 − fl) of interdependent nodes,
the adaptation function aligns positively with the coherence in the
other layers as

Dl,i(t) =
1

L − 1

∑

l′ 6=l

rl′ ,i(t). (4)

This adaptive mechanism allows for the coexistence of distinct
populations in the multiplex network, where some nodes exhibit
competitive behavior while others are interdependent. The propor-
tion fl can vary across layers, enabling each layer to exhibit unique
synchronization dynamics influenced by the interlayer coherence.

This generalized framework [Eq. (1)] demonstrates that the
addition of layers enhances the complexity and robustness of ES, as
evidenced by widened hysteresis loops and abrupt first-order syn-
chronization transitions. This model is both scalable and versatile,
providing a foundation for understanding synchronization phe-
nomena in real-world multiplexed systems, such as neural networks,
power grids, and social networks.

III. THEORETICAL ANALYSIS

In this section, we analytically investigate the dynamics of the
proposed multiplex adaptive network model [Eq. (1)], incorporat-
ing both competitive and interdependent interactions between the
arbitrary number of layers.

For the multiplex network consisting of L layers, governing
equation (1) can be expressed in terms of the order parameters as

θ̇l,i = ωl,i + λDl,irl,ikl,i sin(φl,i − θl,i). (5)

Now, we use the mean-field approximations; in this framework
rl,i = Rl, φl,i = 9l, where Rl is the amplitude of the global order
parameter of the lth layer and 9l represents the average phase of the

oscillators in that layer defined as Rle
i9l = 1

N

∑N
j=1 eiθl,j . The adaptive

coreDl,i is taken as the average of all adaptive terms over competitive
and interdependent units of layer l as

Dl,i = fl



1 −
1

L − 1

∑

l′ 6=l

rl′ ,i



 +
(

1 − fl
) 1

L − 1

∑

l′ 6=l

rl′ ,i. (6)

Therefore, if we consider 1θl,i = θl,i − 9l and 9̇l = �l, then Eq. (5)
becomes

1θ̇l,i = ωl,i − �l − λRlD
′
lkl,i sin(1θl,i), (7)

where D′
l = fl + 1−2fl

L−1

∑

l′ 6=l Rl′ .

The ith oscillator in the layer l reaches a phase-locked state if

1θl,i = arcsin

(

ωl,i − �l

λRlD
′
lkl,i

)

, (8)

with the condition |ωl,i − �l| ≤ λRlD
′
lkl,i. Otherwise, the oscillators

drift indefinitely.
If the natural frequency distribution g(ωl,i) is symmetric, the

average frequency �l becomes identically zero. For phase-locked
oscillators, we then have

1θl,i = arcsin

(

ωl,i

λRlD
′
lkl,i

)

, (9)

where |ωl,i| ≤ λRlD
′
lkl,i.

The global order parameter Rl for the lth layer can be rewrit-
ten as

Rl exp(i9l) =
1

∑N
j=1 kl,j

N
∑

j=1

kl,jrl,j exp (iφl,j)

=
1

N〈Kl〉

N
∑

j=1

kl,j exp(iθl,j), (10)

where 〈Kl〉 =
∑N

j=1 kl,j

N
is the average degree of the lth layer. Assuming

that the contribution of drifting oscillators to Rl is negligible, the
order parameter can be expressed as

Rl =
1

N〈Kl〉
∑

|ωl,i|≤λRlD
′
l
kl,i

kl,i

√

1 −
(

ωl,i

λRlD
′
lkl,i

)2

. (11)

For the thermodynamic limit, the summation can be replaced
by integration, leading to

Rl =
1

〈Kl〉

∫

Bl

P(Kl)g(ωl)Kl

√

1 −
(

ωl

λRlD
′
lKl

)2

dωl dKl, (12)

where P(Kl) represents the degree distribution of the intralayer net-
work in the layer l, and Bl is the region in the (Kl, ωl) plane defined
by |ωl| ≤ λRlD

′
lKl.

IV. VERIFICATION OF ANALYTICAL FINDINGS

To verify the theoretical results, we first consider a multiplex
network of two layers, and then a multiplex network with L = 3
layers. Numerical simulations are conducted to observe the for-
ward and backward phase transitions of the global order parameters
R1, R2, and R3 with respect to the coupling strength λ. The results
confirm the analytical predictions, demonstrating the emergence of
hysteretic behavior and abrupt synchronization transitions as the
fraction fl of the competitive nodes varies. In the numerical simu-
lations, the network topology in each layer is modeled as a random
Erdős–Rényi (ER) network consisting of N = 103 nodes. We have
explored various multiplex network configurations by varying the
fraction of competitive units in each layer and the average degree
of the nodes within those layers. The natural frequencies ωl,i of the
ith oscillator in the lth layer are drawn uniformly from the inter-
val [−1, 1], while the initial phases θl,i are distributed uniformly

Chaos 35, 071102 (2025); doi: 10.1063/5.0283789 35, 071102-3

Published under an exclusive license by AIP Publishing

 15 July 2025 10:46:21

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

within the range [0, 2π). However, we have also considered a bilayer
network setup in which one layer is a scale-free network with a
heterogeneous degree distribution of nodes and has a frequency dis-
tribution as the standard Cauchy distribution (see the Appendix).
The governing Eq. (1) is integrated numerically using the fourth-
order Runge–Kutta (RK4) method. The integration is performed
with a fixed time step of 1t = 10−2 time units, a maximum sim-
ulation time of tmax = 105 iterations, and a transient period of
ttr = 5 × 104 iterations.

To solve the system of Eq. (11), which comes from the theo-
retical analysis, we employ the Newton–Raphson method, a widely
used iterative technique for solving nonlinear equations. Specifi-
cally, we start with initial guesses for r1, r2, . . . , rL from the interval
(0, 1) and refined these values iteratively. At each iteration, we calcu-
late the Jacobian matrix of the system and update the solution using
Newton’s update rule until the values converge within a predefined
tolerance of 10−6. This numerical approach ensures the accuracy and
stable solutions of the order parameters, allowing us to effectively
analyze synchronization transitions in the multiplex network.

To investigate the synchronization profiles of each layer, we
adiabatically vary the coupling strength λ for different values of frac-
tions fl of competitive nodes and average degree 〈Kl〉 of the lth layer.
Specifically, λ is increased (or decreased) within the range [0.0, 0.5]
with step size δλ = 0.01. We first consider a bilayer multiplex net-
work to validate the analytical calculations in Eq. (11). We consider
two types of network configurations, namely,

(1) coexistence of competitive and cooperative nodes in both layers,
and each pair of replica nodes are of the same type, for instance,
f1,2 = 0.15.

(2) one layer is cooperative (i.e., f1 = 0.0) and other is competitive
(i.e., f2 = 1.0).

Figure 1 illustrates the numerically and analytically calculated
amplitudes of the global order parameters R1 and R2 for the two con-
figurations of the networks. In Fig. 1(a), both layers have an identical

FIG. 1. Variation of the amplitudes of the global order parameters (R1 and R2)
by changing the coupling strength λ for a bilayer multiplex network under two dis-
tinct configurations: (a) both layers have identical fractions of competitive units
(f1,2 = 0.15), and (b) one layer is purely cooperative (f1 = 0.0) while the other
is entirely competitive (f2 = 1.0). Red and blue arrows represent forward and
backward transitions for R1 and R2, respectively, while solid and hollow circles
indicate analytically derived values based on Eq. (11) for L = 2. Each layer com-
prises N = 103 nodes connected via random networks with average degrees
〈K1,2〉 = 20.

fraction of competitive units (f1,2 = 0.15), resulting in similar syn-
chronization dynamics in the two layers, highlighting the hysteretic
nature of the synchronization transitions. In Fig. 1(b), the first layer
is purely cooperative (f1 = 0.0), while the second layer is entirely
competitive (f2 = 1.0), leading to distinct behaviors in synchroniza-
tion. Here, R1 shows a second-order continuous phase transition
while R2 depicts an abrupt phase transition to the synchronization
state at a critical coupling strength, but when the coupling strength
crosses the critical value, R2 continuously goes back to zero value,
which means to the incoherent state. Red and blue arrows denote
the forward and backward transitions for R1 and R2, respectively.
Solid red and hollow blue circles represent the analytically derived
R1 and R2 values, respectively, from Eq. (11). This figure shows
an excellent agreement between numerical results and analytical
predictions. Each layer consists of N = 103 nodes connected via
random networks with identical average degree 〈K1,2〉 = 20.

Next, we extend the result to a trilayer multiplex network to
explore the synchronization dynamics in a more complex situation,
and like the previous bilayer model, we take two configurations,
namely,

(1) coexistence of competitive and cooperative nodes in both layers,
and each pair of replica nodes are of same type, for instance,
f1,2,3 = 0.15.

(2) Two cooperative layers (i.e., f1,2 = 0.0) and one competitive
layer (f3 = 1.0).

Figure 2 presents the variation of the three global order param-
eters R1, R2, and R3 in two distinct scenarios (as stated above) by
changing the coupling strength λ. In Fig. 2(a), all three layers share
the same fraction of competitive units (f1,2,3 = 0.15), leading to sim-
ilar synchronization transitions across all layers. In Fig. 2(b), the
first two layers are fully cooperative (f1,2 = 0.0), while the third layer
is entirely competitive (f3 = 1.0). The forward and backward tran-
sitions for R1, R2, and R3 are represented by red, blue, and green
arrows, respectively. The analytically calculated values are denoted

FIG. 2. Numerically and analytically calculated amplitudes of the global order
parameters (R1, R2, and R3) for the trilayer multiplex network under two configu-
rations: (a) all layers have identical fractions of competitive units (f1,2,3 = 0.15),
and (b) the first two layers are purely cooperative (f1,2 = 0.0), while the third
layer is entirely competitive (f3 = 1.0). Red, blue, and green arrows represent
forward and backward transitions for R1, R2, and R3, respectively. Solid red, hol-
low blue, and solid green circles are the analytically calculated values of R1, R2,
and R3, respectively, based on Eq. (11) for L = 3. Here, identical average degree
〈K1,2,3〉 = 20.
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by solid red, hollow blue, and solid green circles, again demonstrat-
ing excellent consistency with the numerical simulations. Hence, we
can say that our analytical predictions derived from the mean-field
approach align closely with the numerical simulations on bilayer and
trilayer multiplex networks with some configurations depending on
the fractional values of the competitive units.

V. EXPLOSIVE SYNCHRONIZATION WITH MIXED

TYPES OF INTTERLAYER INTERACTIONS

Now, we will investigate how the mixed type of interactions
(i.e., f1 6= f2 6= f3) influences the explosive synchronization with dif-
ferent average degrees in the layers. In the subsequent sections, we
will study in more detail by simulating Eq. (1) and observe the syn-
chronization behaviors in the layers of any bilayer (in Sec. V A) and
trilayer (Sec. V B) multiplex networks with different possible config-
urations. In Sec. V C, we make a comparison of the hysteresis regions
by increasing the number of layers of the multiplex networks.

A. Synchronization in bilayer multiplex networks

Figure 3 depicts the explosive synchronization (ES) behavior in
a bilayer multiplex network, showing the forward (solid curves) and
backward (dotted curves) transitions of the global order parameters
R1 (blue) for layer-1 and R2 (red) for layer-2. The hysteresis loops,
characteristic of ES, exhibit identical critical coupling strengths
for both layers during forward and backward transitions, indicat-
ing that the synchronization onset is unaffected by the fraction of
competitive units.

However, the degree of synchronization, as measured by the
height of the order parameters R1 and R2, decreases with an increase
in the fraction of competitive units. Layer-1, with a lower fraction
of competitive nodes (f1 = 0.1), achieves a higher synchronization

FIG. 3. Explosive synchronization profile of the layers of a bilayer multiplex net-
work. Blue curves are the backward and forward transitions of the order parameter
R1, and the red ones are for R2. The fraction values of competitive units are
f1 = 0.1 and f2 = 0.2. Each layer has N = 103 total units connected through
random networks with average degrees 〈K1,2〉 = 12.

FIG. 4. Phase transition profile of the layers of a bilayer multiplex network. Red
curves are the backward and forward transitions of the amplitude of order parame-
terR1, and the blue ones are forR2. (a) The fraction values of competitive units are
f1 = 0.3 and f2 = 0.1. Each layer hasN = 103 total units connected through ran-
dom networks with average degrees 〈K1〉 = 12 and 〈K2〉 = 42. (b) The fraction
values of competitive units are f1 = 0.1 and f2 = 0.2. Each layer has N = 103

total units connected through random networks with average degrees 〈K1〉 = 12
and 〈K2〉 = 42.

level compared to layer-2, where the fraction is higher (f2 = 0.2).
Both layers consist of N = 1000 nodes connected through random
intralayer networks with an average degree 〈K1,2〉 = 12.

This figure highlights the impact of competitive interactions
on synchronization dynamics. While the critical coupling strength
remains unchanged, increasing the fraction of competitive units
suppresses the degree of synchronization, demonstrating how the
balance between competitive and interdependent interactions gov-
erns the dynamics of ES in multiplex networks.

Figure 4 demonstrates the continuous phase transition profiles
of the global order parameters R1 (red) for layer-1 and R2 (blue)
for layer-2 in the bilayer multiplex network. Unlike in Fig. 3, where
the transition exhibits explosive synchronization with hysteresis, the
transitions here are of a continuous type, showing no abrupt jumps
or hysteresis. This implies that synchronization occurs smoothly as
the coupling strength increases, with both the forward (solid curves)
and backward (dashed curves) transitions coinciding, confirming
the absence of hysteresis.

In contrast to Fig. 3, where only the fraction of competitive
units was varied, in Fig. 4, both the fraction of competitive units
and the average degrees of the two layers are varied. In Fig. 4(a),
layer-1 has a higher fraction of competitive units (f1 = 0.3) com-
pared to layer-2 (f2 = 0.1), with the average degrees 〈K1〉 = 12
and 〈K2〉 = 42. Figure 4(b) presents the reverse configuration, with
f1 = 0.1, f2 = 0.2, and the same average degrees as Fig. 4(a).

The transitions in Fig. 4 reveal that the layer with the higher
average degree (〈K2〉 = 42) consistently achieves synchronization
at a lower critical coupling strength compared to the lower-degree
layer (〈K1〉 = 12). This highlights how both the fraction of com-
petitive units and the network connectivity contribute to the syn-
chronization dynamics, with higher connectivity promoting easier
synchronization and lowering the critical coupling strength required
for coherence.

Figure 5 presents the amplitude of the global order parameters
R1 (blue) and R2 (red) for the bilayer multiplex network, depict-
ing the forward and backward transitions of the order parameters
as the coupling strength λ is varied. The figure compares four
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FIG. 5. Amplitude of the global order parameters of the layers of the bilayer mul-
tiplex network. Backward and forward transitions of R1(blue),R2(red) are plotted
with respect to the coupling strength (λ) for different multiplex networks. (a) Both
layers have a fraction of competitive units f1,2 = 0.1, and the average degrees of
the layers are taken as 〈K1,2〉 = 24. (b) f1,2 = 0.5, and 〈K1,2〉 = 22 (c) f1,2 = 0.6,
and 〈K1,2〉 = 18. (d) f1,2 = 0.8, and 〈K1,2〉 = 16.

different configurations of multiplex networks, varying the fractions
of competitive units and the average degrees of the layers.

In panel (a), both layers have the same fraction of competi-
tive units, f1,2 = 0.1, and the same average degree 〈K1,2〉 = 24. The
synchronization is of the first order, as indicated by the presence of
hysteresis. Both layers exhibit identical critical coupling values and
achieve the same degree of synchronization during the forward and
backward transitions.

In Figs. 5(b)–5(d), we observe continuous (second-order)
phase transitions without hysteresis. Although the critical coupling
values remain the same for both layers in these configurations, the
degree of synchronization differs between layers. In Fig. 5(b), with
f1,2 = 0.5 and 〈K1,2〉 = 22, layer-1 reaches a higher synchroniza-
tion degree (R1 = 1) compared to layer-2, which only synchronizes
partially (R2 = 0.5).

Figure 5(c) further reduces the average degree to 〈K1,2〉 = 18,
with both layers having f1,2 = 0.6. In this case, layer-1 again fully
synchronizes (R1 = 1), while layer-2 synchronizes to a lower degree
(R2 = 0.3), indicating stronger suppression of synchronization due
to increased competitive interactions.

In Fig. 5(d), where both layers have the highest fraction of com-
petitive units, f1,2 = 0.8, and the lowest average degree 〈K1,2〉 = 16,
layer-1 reaches its coherent state, but layer-2 remains in its inco-
herent state. This highlights the extreme impact of competitive
interactions and reduced connectivity on synchronization in layer-2,
effectively preventing it from reaching coherence.

Figure 6 illustrates two different configurations of a bilayer
multiplex network, where the behavior of the global order param-
eters R1 (blue) for layer-1 and R2 (red) for layer-2 are shown as
functions of the coupling strength λ. The transitions in this figure

FIG. 6. Amplitude of the global order parameters of the layers of the bilayer
multiplex network. Two types of multiplex networks are taken in two panels, and
forward and backward R1,R2 are plotted by adiabatically increasing and decreas-
ing the coupling strength λ. In the upper panel, (a) all the units of Layer-1 are
cooperative (f1 = 0.0), and (b) the units of Layer-2 are all competitive (f2 = 1.0).
Both layers are comprised of only competitive units in the lower panel (f1 = f2

= 1.0). (c) Amplitude of the global order parameter R1 vs the coupling strength
λ, and (d) R2 vs λ.

are reversible and demonstrate both continuous and explosive syn-
chronization, depending on the configuration of cooperative and
competitive units in the layers.

Figures 6(a) and 6(b) refer to the configuration where layer-
1 is comprised solely of cooperative units and layer-2 consists of
only competitive units. In Fig. 6(a), layer-1 undergoes a contin-
uous phase transition to its synchronized state as the coupling
strength increases. The transition is smooth and reversible, indicat-
ing second-order synchronization dynamics. In contrast, Fig. 6(b)
shows that layer-2, consisting only of competitive units, exhibits a
sudden jump to a degree of synchronization around R2 = 0.6 at
the critical value λ = 0.07, followed by a rapid return to the inco-
herent state as λ decreases. This abrupt change is characteristic of
an explosive synchronization transition, but the process remains
reversible.

Figures 6(c) and 6(d) refer to the configuration where both
layers are comprised entirely of competitive units. In Fig. 6(c), layer-
1 remains in an incoherent state throughout the entire range of
coupling strength λ, unable to synchronize due to the fully com-
petitive nature of its units. Meanwhile, Fig. 6(d) shows that layer-2
undergoes an explosive phase transition, reaching its coherent state
at a critical coupling value λ = 0.07. The transition is abrupt but
reversible, indicating explosive synchronization in layer-2 while
layer-1 remains unsynchronized.

Finally, the (λ, f)-parameter space of the bilayer multiplex net-
work is illustrated in Fig. 7, examining the combined effect of cou-
pling strength (λ) and the fraction of competitive units (f1, f2) on the
synchronization transitions of the two layers. Figures 7(a) and 7(b)
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FIG. 7. The (λ, f )-parameter space of the bilayer multiplex network for two config-
urations, and colorbars represent the forward-phase transition of the amplitudes
of the order parameters: (a) and (b) show R1 and R2 for 〈K1,2〉 = 12, while (c)
and (d) show R1 and R2 for 〈K1,2〉 = 24.

depict the forward-phase transitions for the global order parameters
R1 and R2, respectively, for a network configuration where the aver-
age degree of both layers is set to 〈K1,2〉 = 12. Figures 7(c) and 7(d)
show similar transitions for the case where the average degrees of
the layers are increased to 〈K1,2〉 = 24. In each panel, the colorbars
represent the amplitude of the global order parameters across the
(λ, f)-space, demonstrating how the synchronization behavior of the
layers is influenced by varying competitive interactions and coupling

FIG. 8. Amplitudes of the global order parameters of the trilayer multiplex net-
work. The layers’ backward- and forward-phase transition concerning the coupling
strength (λ) is depicted by three colors: green for R1, red for R2, and blue for
R3. Here, the three fractions of the competitive units are taken as f1 = 0.05,
f2 = 0.15, f3 = 0.25, and the average degrees of the intralayer random networks
are kept fixed at 〈K1,2,3〉 = 12.

FIG. 9. Phase transition profiles in the trilayer multiplex network. The green, red,
and blue curves show the backward and forward transitions of the order param-
eters R1, R2, and R3, respectively. (a) Fractions of competitive units: f1 = 0.3,
f2 = 0.2, f3 = 0.1; average degrees: 〈K1〉 = 12, 〈K2〉 = 32, 〈K3〉 = 52.
(b) Fractions of competitive units: f1 = 0.1, f2 = 0.2, f3 = 0.3; average degrees:
〈K1〉 = 12, 〈K2〉 = 28, 〈K3〉 = 42. Each layer has N = 103 units connected via
random networks.

strength. The figures clearly show that as the network connectiv-
ity between the units or the fraction value of the competitive units
within the layer increases, the critical value of the -phase transition
is lowered in both the two layers, and the synchronization region is
increasingly enhanced.

B. Synchronization in trilayer multiplex networks

Moving to the trilayer multiplex network configuration, Fig. 8
presents the amplitude of the global order parameters R1 (green), R2

(red), and R3 (blue) for the trilayer network, showing the forward

FIG. 10. Amplitude of the global order parameters in the trilayer multiplex net-
work. The backward and forward transitions of R1 (green), R2 (red), and R3 (blue)
are plotted against the coupling strength λ for different configurations: (a) f1,2,3
= 0.1, 〈K1,2,3〉 = 24; (b) f1,2,3 = 0.5, 〈K1,2,3〉 = 22; (c) f1,2,3 = 0.6, 〈K1,2,3〉 = 18;
(d) f1,2,3 = 0.8, 〈K1,2,3〉 = 16. Each layer has N = 103 units connected through
random network topology.
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FIG. 11. Amplitude of the global order parameters R1,R2,R3 vs the coupling
strength λ. Here, the fraction values of the competitive units for the three lay-
ers are taken as f1 = 0.0, f2 = 0.2, f3 = 1.0, and all the three intralayer network
structures of the multiplex network are random networks of average degree
〈K1,2,3〉 = 20.

and backward transitions as the coupling strength λ is varied. The
figure illustrates the synchronization dynamics of each layer with
different fractions of competitive units across the layers.

In this configuration, the fractions of competitive units are
f1 = 0.05, f2 = 0.15, and f3 = 0.25, with the average degrees for all
layers kept constant at 〈K1,2,3〉 = 12. The transitions in all three
layers exhibit typical first-order phase transitions with hysteresis.

Notably, as in the previous case of the bilayered multiplex net-
work configuration (Fig. 3), the degree of synchronization achieved
by each layer is inversely related to the fraction of competitive units
within the layer. Layer-1, with the smallest fraction of competitive
units (f1 = 0.05), reaches the highest level of synchronization, fol-
lowed by layer-2 with f2 = 0.15, and, finally, layer-3, with the highest
fraction of competitive units (f3 = 0.25), achieves the lowest syn-
chronization level. This behavior underscores the suppressive effect
of competitive interactions on the synchronization process, as lay-
ers with higher fractions of competitive units struggle to achieve full
synchronization, even as the coupling strength increases.

Figure 9 illustrates the phase transition behaviors in two con-
figurations of the trilayer multiplex network under varying frac-
tions of competitive nodes and average degrees. Figure 9(a) shows

FIG. 12. Evolution of the order parameters of the trilayered multiplex network model vs the coupling strength. Upper panel: two cooperative layers and one competitive layer.
(a) and (b): The evolution of the two cooperative layer’s order parameters for f1,2 = 0.0. (c) The order parameter of the competitive layer for f3 = 1.0. Middle panel (d)–(f):
One layer is cooperative (f1 = 0.0) and the remaining two are competitive (f2,3 = 1.0). Bottom panel (g)–(i): Both the three layers are competitive (f1,2,3 = 1.0).
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the phase transition profiles for the fractions of competitive units
f1 = 0.3, f2 = 0.2, f3 = 0.1, with average degrees 〈K1〉 = 12,
〈K2〉 = 32, 〈K3〉 = 52. Figure 9(b) illustrates the transitions for
f1 = 0.1, f2 = 0.2, f3 = 0.3, and average degrees 〈K1〉 = 12,
〈K2〉 = 28, 〈K3〉 = 42. The forward and backward phase transitions
of layer-1, layer-2, and layer-3, i.e., R1, R2, and R3 are represented
by green, red, and blue curves, respectively. The results emphasize
the role of competitive fractions and average degrees in synchro-
nization dynamics. Higher fractions of competitive units reduce
synchronization levels, while layers with higher connectivity achieve
synchronization more readily, lowering critical coupling thresholds.
However, two layers within the multiplex network exhibit almost
identical phase transition profiles in each configuration, while the
third layer exhibits distinct behavior, either the synchronization type
or the critical value, and the degree of synchronization is different
from the other two layers.

Figure 10 illustrates the phase transition behaviors in the tri-
layer multiplex network for four distinct configurations, varying
in the fraction of competitive units (f1, f2, and f3) and the average
degrees (〈K1〉, 〈K2〉, and 〈K3〉) of the layers. In Fig. 10(a), where
all layers have identical fractions of competitive units (f1,2,3 = 0.1)
and average degrees (〈K1,2,3〉 = 24), all three layers exhibit iden-
tical first-order phase transitions with hysteresis loops. However,
as shown in Figs. 10(b)–10(d), where the fractions of competitive
units are increased (f1,2,3 = 0.5, 0.6, and 0.8, respectively) and the

average degrees are progressively reduced (〈K1,2,3〉 = 22, 18, and
16, respectively), the synchronization dynamics diverge. While two
layers exhibit similar phase transitions, the third layer shows a dis-
tinct behavior. In particular, as the fraction of competitive units
increases, the degree of synchronization for this third layer decreases
significantly. In Fig. 10(d), where the fraction of competitive units
is highest, the synchronization in this layer is entirely suppressed,
with its degree dropping to zero. This demonstrates the critical
impact of competitive interactions and reduced connectivity on
synchronization dynamics in multiplex networks.

Now, we consider a special configuration of the trilayered mul-
tiplex network where layer-1 is comprised of only cooperative units
(f1 = 0.0), layer-3 is comprised of only competitive units (f3 = 1.0),
and in layer-2, the coexistence of both types of units is present, with
the number of competitive units being less than that of coopera-
tive units (f2 = 0.2). The average degrees of the intralayer networks
for all three layers are 〈K1,2,3〉 = 20. The phase transitions of layer-1
and layer-2 are almost identical, exhibiting a continuous transition
from the incoherent to the coherent state as the coupling strength
(λ) increases. However, the phase transition of layer-3 is distinct. It
transitions to a coherent state at a critical coupling strength λ = 0.1,
but as λ increases further, it returns to an incoherent state. Each of
these transitions is continuous and reversible.

Figure 11 shows the forward and backward transitions of the
global order parameters for the three layers in this configuration.

FIG. 13. The (λ, f )-parameter space of the trilayer multiplex network for two configurations, where the colorbars represent the forward-phase transition of the amplitudes of
the order parameters. First row panels (a)–(c) depict the order parameters R1, R2, and R3, respectively, for 〈K1,2,3〉 = 12, while the second row panels (d)–(f) show R1, R2,
and R3 for 〈K1,2,3〉 = 24.
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The transitions (blue and red) of layer-1 and layer-2 reflect typical
continuous synchronization dynamics. In contrast, layer-3 exhibits
a reentrant behavior (green curve), achieving coherence at a crit-
ical coupling strength and subsequently reverting to incoherence.
Finally, we consider three configurations for the trilayered multi-
plex network, where the fraction of competitive units for each layer
is either 0 or 1. Figure 12 emphasizes how the number and config-
uration of competitive layers shape the synchronization dynamics
in the trilayered multiplex network. Figures 12(a)–12(c) depict the
phase transitions for a multiplex network where only one layer is
competitive. In this configuration, the global order parameter of the
competitive layer exhibits a continuous and reversible transition in
Fig. 12, like R3 in Fig. 11, as the coupling strength (λ) increases, while
the two cooperative layers in Figs. 12(b) and 12(c) show the same
second-order phase transition from the incoherent to coherent state.
Figures 12(d)–12(f) show the phase transitions for a network where
two layers are competitive. Here, the cooperative layers undergo
continuous phase transitions to coherence in Fig. 12(d), whereas in
Fig. 12(e), one competitive layer always remains in an incoherent
state, and the other competitive layer exhibits a second-order phase
transition in Fig. 12(f). Figures 12(g)–12(i) present the transitions
for the configuration where all three layers are competitive. In this
case, also two layers exhibit continuous synchronization transitions
as λ increases, but one layer remains in an incoherent state.

Building upon the insights from the previous configurations,
Fig. 13 delves deeper into the impact of interlayer dynamics on
a more complex trilayer multiplex network. The (λ, f)-parameter
space is explored like the previous for the bilayer multiplex network
configurations, to understand the combined influence of coupling
strength (λ) and the fraction of competitive units (f) on the syn-
chronization transitions across all three layers. Figures 13(a), 13(b),
and 13(c) represent the forward-phase transitions of the global
order parameters R1, R2, and R3, respectively, for a configuration
where all layers have an average degree of 〈K1,2,3〉 = 12. In con-
trast, Figs. 13(d), 13(e), and 13(f) illustrate the same transitions for
a network with increased average degrees 〈K1,2,3〉 = 24. The color-
bars depict the amplitude of the global order parameters in each
panel, which clearly shows that as the network connectivity between
the units increases, the critical value of the forward-phase transi-
tion is lowered in the three layers and the synchronization region is
increasingly enhanced like the previous case of the bilayer multiplex
network. This figure highlights the crucial role that both the fraction
of competitive units and the interlayer interaction connectivity play
in shaping the synchronization dynamics, offering a comprehen-
sive view of how multiplex network architecture governs the critical
thresholds for explosive synchronization. So, in this adaptive frame-
work, for the trilayered multiplex network, we observe that the phase
transition profile of one layer can differ significantly from the others
by varying the average degrees and the fraction of competitive nodes
in the layers. However, when the fraction of competitive nodes is
very small and identical across the three layers (f1,2,3 = f with f � 1)
and the average degrees are the same (〈K1,2,3〉 = 〈K〉), all three layers
exhibit identical first-order phase transitions with hysteresis, having
the same critical values and synchronization levels [like Fig. 10(a)].
To understand this, we focus on the phase transition profile of a
single layer and compare it with monolayer and bilayer multiplex
network configurations, keeping the values of f and 〈K〉 consistent

across all three configurations. This comparison highlights how the
interplay of competitive and cooperative interactions influences the
synchronization dynamics in multiplex networks with varying num-
bers of layers, which means configurations and complexities. To
further illustrate these effects, we now compare the synchronization
behavior across monolayer, bilayer, and trilayer network configu-
rations, examining how increasing structural complexity impacts
critical transitions and hysteresis properties.

C. Comparison across monolayer, bilayer, and trilayer

networks

Figure 14 illustrates the explosive synchronization profiles for
three different network configurations: a monolayer in Fig. 14(a), a
bilayered multiplex network in Fig. 14(b), and a trilayered multiplex
network in Fig. 14(c). The forward (magenta) and backward (blue)
transitions of the global order parameter R1 are plotted against
the coupling strength λ for all configurations, with identical aver-
age degrees (〈K〉 = 20) and fraction values of competitive units
(f = 0.15) across the layers. It is observed that the critical value of

FIG. 14. Explosive synchronization profile for three types of multiplex networks.
Forward (magenta) and backward (blue) phase transitions of the order parame-
ters R1 vs the overall coupling strength λ for (a) a monolayer, (b) a bilayer, and
(c) a trilayered multiplex network. The average degrees and the fractional values
are fixed at 20 and 0.15, respectively, in every layer of the three types of multiplex
networks.
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the coupling strength for the first-order forward-phase transition
increases as the number of layers in the multiplex configuration
rises. Consequently, the hysteresis region also becomes wider with
the increase in the number of layers. This indicates that adding more
layers in the multiplex structure enhances the system’s resilience to
synchronization, making the transition to the coherent state more
abrupt, requiring a higher coupling strength, and increasing the
range of bistability due to competitive and cooperative interlayer
dynamics. An increase in hysteresis with the number of layers is
often seen as a sign that the synchronized state is becoming more
stable since it can resist larger disturbances before losing coherence.
However, this can also mean the system is becoming more fragile. If
synchronization requires a much higher coupling strength as layers
are added, it shows that the system is harder to bring into a syn-
chronized state from the beginning. This makes the dynamics more
sensitive to initial conditions and more dependent on the exact value
of the coupling. As a result, small changes can lead to sudden, irre-
versible transitions. So, while the system may appear more stable
once synchronized, it is also more prone to failure and harder to
control, revealing a hidden fragility behind the increased hysteresis.
These results emphasize the significant impact of multiplex architec-
ture on the critical thresholds and hysteresis properties of explosive
synchronization.

VI. CONCLUSION

In this study, we proposed a generalized framework for under-
standing explosive synchronization in adaptive multiplex networks
with arbitrary numbers of layers. Our work combines interdepen-
dent and competitive interactions simultaneously between the layers
through the interlayer connection, offering insights into how these
opposing dynamics shape synchronization transitions in complex
systems. Through the analytical approach validated by numerical
simulations, we demonstrated that the coexistence of competitive
and cooperative interactions amplifies hysteretic behavior, partic-
ularly when the fractions of the competitive unit in each layer
are identical and very small enough (f1 = f2 = f3 = f � 1), and
the width of this loop increases as the number of network layers
increases.

The key findings reveal that increasing the fraction of compet-
itive nodes suppresses synchronization and widens the hysteresis
loop, while the addition of layers enhances the system’s resilience
to abrupt synchronization transitions. Furthermore, the adaptive
coupling mechanisms we introduced highlight the pivotal role of
interlayer coherence in governing synchronization dynamics. Our
model generalizes to networks with an arbitrary number of lay-
ers, providing scalability and versatility for studying synchroniza-
tion phenomena across diverse real-world systems, including neural
networks, power grids, and social networks.

This work bridges the gap between monolayer and multiplex
synchronization models, establishing a robust theoretical founda-
tion for designing and controlling large-scale adaptive systems.
Future research can extend the current framework by incorporating
more complex interaction mechanisms, particularly within multi-
layer network structures where diverse coupling strategies coexist.
One promising direction is to replace the linear adaptive term
with nonlinear adaptive rules, which may capture more realistic

and biologically relevant dynamics. Additionally, introducing time
delays into the model could provide deeper insights into the tem-
poral aspects of synchronization, especially in systems where inter-
actions are not instantaneous. Together, these extensions would
allow for a more comprehensive understanding of synchronization
phenomena in complex networked systems.
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APPENDIX: EFFECT OF THE DISTRIBUTIONS OF

DEGREE AND FREQUENCY OF NODES ON THE

SYNCHRONIZATION PROFILE

Previously, all numerical simulations were carried out using
multiplex configurations in which each layer was modeled as a
random ER network, with oscillator frequencies ωl,i drawn from
a homogeneous uniform distribution over the interval [−1, 1]. To
explore the impact of structural and dynamical heterogeneity on
the synchronization behavior, we now consider an altered multi-
plex setup. In this configuration, one of the layers is replaced with
a scale-free network that exhibits a heterogeneous degree distri-
bution, and the corresponding oscillator frequencies are sampled
from a standard Cauchy distribution, introducing strong dynami-
cal variability due to its heavy-tailed nature. The other layer remains
unchanged from the previous models. This arrangement allows us
to systematically examine the role of both topological and frequency
heterogeneity in shaping the synchronization profile of the system.
The phase transition profiles of this multiplex configuration are
given in Fig. 15. The forward and backward critical points remain
the same for both layers. However, the degree of synchronization
gets affected. The layer with a scale-free network topology has lower
values of the degree of synchronization. The hysteresis is observed
for sufficiently small fractional values of the competitive units in
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FIG. 15. Amplitudes of the backward and forward global order parameters in the
bilayer multiplex network for N = 103. The phase transition profiles of layers 1
and 2 are represented by the curves in red and blue, respectively. Layer-1 is a
random ER network with an average degree 〈K1〉 = 12 and having a random
homogeneous distribution of frequenciesω1,i in the range [−1, 1]. Layer-2 is a BA
network with the average degree 〈K1〉 = 12 and the frequencies ω2,i are drawn
from the standard Cauchy distribution. Two fractional values of the competitive
units are for two multiplex configurations, viz., (a) f1,2 = 0.01 and (b) f1,2 = 0.05.

this multiplex setup [see Fig. 15(a)]. We cannot observe hysteresis
even when the fractional values are f1 = f2 = 0.05 [see Fig. 15(b)].
Whereas in our previous multiplex configuration, when the frac-
tional values were f1 = f2 = 0.15, we observed a hysteresis region
[see Fig. 14(b)].
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