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Abstract—Hypergraphs are a rapidly developing area of graph
theory that has important applications in many fields, including
cognitive neuroscience and medicine. In this paper, we review
recent advances in the application of hypergraphs to brain con-
nectivity analysis using brain imaging data. We also present our
results on the construction of a hypergraph of brain connectivity
during visual perception based on the analysis of magnetoen-
cephalography (MEG) data. The hypergraph approach allowed
us to identify individual differences in frequency bands, offering
deeper insights into the dynamic nature of brain connectivity.
Extending traditional graph theory, we defined a functional
network connecting different brain regions (vertices) across time
segments by generating edge time series that capture temporal
fluctuations in connectivity. Using a coherence measure, we
created edge time series to illustrate how connections evolve
over time. These series contribute to the edge-to-edge functional
connectivity network, highlighting hyperedges as connected com-
ponents in the absolute value functional connectivity network.
We identified key features of the brain network across the delta,
theta, alpha, beta, and gamma frequency bands and examined
interactions among the frontal, parietal, temporal, and occipital
lobes in both hemispheres. Our findings support the existence
of cortico-cortical interactions, and the resulting hypergraph
revealing robust activation patterns in specific brain regions.
These results suggest potential integration and multifunctionality
within the lobes, providing valuable insights into brain dynamics
during visual perception.

Index Terms—hypergraph, brain connectivity, cognitive neu-
roscience, visual perception, magnetoencephalography (MEG).

I. INTRODUCTION

Hypergraphs have emerged as a powerful tool for studying
brain connectivity in recent years [1]–[15]. Unlike conven-
tional graphs, which are limited to modeling pairwise rela-
tionships, hypergraphs enable the representation of complex,
multi-party interactions among multiple brain regions simulta-
neously. This approach extends the reach of traditional graph
theory by providing a more nuanced and comprehensive view
of functional brain networks, capturing the intricate dynamics
of connections as they evolve over time. Through hypergraph
analysis, researchers can gain deeper insights into how var-
ious brain regions interact, adapt, and integrate information
during cognitive processes, offering novel perspectives on the
organization and functionality of neural networks.

This work was supported by the Russian Science Foundation project No.
23-71-30010.

Understanding brain connectivity in response to a variety
of stimuli is critical to uncovering information processing
and decision-making mechanisms. Scientists distinguish three
types of brain connectivity: structural, functional, and effec-
tive. Structural connectivity allows us to build anatomical
neural networks, revealing neural communication pathways.
Functional connectivity identifies active brain regions with
correlated frequency, phase, and amplitude. Finally, effective
connectivity infers the dynamic flow of information from
functional connectivity data.

In this paper, we review recent advances in applying hyper-
graphs to study functional brain connectivity and, to the best
of our knowledge, present the first hypergraph of functional
brain connectivity constructed using magnetoencephalography
(MEG) data. By extending traditional graph theory, the hy-
pergraph approach uncovers the functional connectivity net-
work between different brain regions across various frequency
bands. Utilizing a coherence measure – a statistical estimate
of the correlation between pairs of signals across frequencies
– we generate time series of edges that illustrate the evolution
of these connections over time. We analyze key features of
brain networks in the delta, theta, alpha, beta, and gamma
frequency bands, with a particular focus on interactions among
the frontal, parietal, temporal, and occipital lobes in both
hemispheres. The resulting hypergraph reveals consistent ac-
tivation patterns in specific brain regions, providing evidence
for cortico-cortical interactions. Our findings suggest potential
integration and multifunctionality within the lobes, offering
new insights into brain dynamics during visual perception.

II. MATHEMATICAL BASIS

Unlike a traditional graph, where an edge represents a
connection between a pair of vertices (nodes), a hypergraph
allows for more than two vertices to be connected by a single
hyperedge, as shown in Fig. 1.

Fig. 1. Examples of a graph (left) and a hypergraph (right) formed by three
vertices connected by three edges (left) and one hyperedge (right).
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Figure 2 illustrates how a hypergraph of brain connectivity
can be constructed. The figure depicts a simple hypergraph,
meaning it does not contain empty or multiple edges.

Fig. 2. An example of a simple hypergraph formed by 10 vertices connected
by 4 hyperedges.

In this example, the brain’s neural network is conventionally
divided into 10 areas. When the brain receives a visual stimu-
lus, such as seeing a familiar face (ANP), it activates a neuron
(or a set of neurons) in the region corresponding to vertex v1,
which is associated with this person. This neuron then activates
other neurons that store information about ANP’s colleagues,
represented by vertices v2, v3, and v4. Consequently, the
hypergraph forms a hyperedge e1 that connects these four
vertices (v1, v2, v3, v4).

Now, suppose that a colleague associated with v3 is also a
relative of ANP, and thus belongs to a network of relatives
associated with vertices v5, v6, and v7, all connected by
hyperedge e2.

Simultaneously, one of ANP’s relatives is also a friend
of ANP, linking them to the network of friends represented
by hyperedge e3. Additionally, suppose that the individuals
associated with vertices (v1, v2, . . . , v8) and v10 reside in
Europe, while the person associated with v9 lives in America.
Therefore, the vertices corresponding to those who live in
Europe can be connected by hyperedge e4.

While a graph G is defined as

G = (V,E), (1)

where V is a set of vertices and E is a set of subsets of size 2
of V, the hypergraph H in Fig. 2 is composed by a set of
vertices V and a set of hyperedges E and described as

H = (V,E), V = {v1, v2, ..., v10}, E = {e1, e2, e3, e4},
(2)

where e1 = {v1, v2, v3, v4}, e2 = {v3, v5, v6, v7}, e3 =
{v5, v8, v9}, e4 = {v1, v2, v3, v4, v5, v6, v7, v8, v10}.

A hypergraph is defined by its order and size. The order
refers to the number of vertices, while the size denotes the
number of hyperedges. In the hypergraph illustrated in Fig. 2,
the order is 10, and the size is 4. Additionally, each vertex
and each hyperedge is characterized by its degree (Deg). The
degree of a vertex v is the number of hyperedges incident to it,
whereas the degree of a hyperedge e is the number of vertices

incident to it. Mathematically, these degrees can be expressed
as:

Deg(v) =
∑
e∈E

w(e) ∗H(v, e), Deg(e) =
∑
v∈V

H(v, e). (3)

In our example, Deg(e1) = 4, Deg(e4) = 9, Deg(v2) = 2,
Deg(v9) = 1, etc.

If a vertex v is covered by two or more hyperedges, we
say that these hyperedges are adjacent through v. Similarly,
the vertices covered by a hyperedge e are considered adjacent
through e. In our example, hyperedges e1 and e2 are adjacent
through v3 (denoted as e1 ∼ e2), and hyperedges e2 and e3
are adjacent through v5 (denoted as e2 ∼ e3). Additionally,
vertices v1 and v2 are adjacent through e1 (denoted as v1 ∼
v2), while v2 and v8 are adjacent through e4 (denoted as v2 ∼
v8).

A hypergraph can be modified by transforming vertices
into edges (V → E) and vice versa. This transformation
is called “duality of hypergraphs” and is denoted as H =
(V,E) → H∗ = (E,X), where X = {x1, x2, . . . . . . , xn},
with xi representing the set of all edges E incident to vertex
vi. The degree of vertices in a dual hypergraph H∗ is equal
to the degree of hyperedges in H, while the degree of the
hyperedges remains unchanged from H. This relationship can
be expressed as follows:

Deg(vi) = Deg(xi), Deg(ei) = Deg(ei). (4)

Additionally, a hypergraph H can be represented using an
incidence graph, an incidence matrix, and a hyperedge weight
matrix W.

The incidence matrix H = {0, 1}|V|×|E| is defined as

H[i][j] =

{
1, if vi ∈ ej ,

0, otherwise.
(5)

The incidence graph and incidence matrix of our example are
shown in Fig. 3, where the vertical positions represent vertices,
while the horizontal positions represent hyperedges.

The weight matrix indicates the significance of each hyper-
edge in the hypergraph and is given as:

W =


w(e1) 0 0 0
0 w(e2) 0 0
0 0 w(e3) 0
0 0 0 w(e4)

 =


4 0 0 0
0 4 0 0
0 0 3 0
0 0 0 5

 .

(6)
The weight of each hyperedge is located at the cor-
responding diagonal position of W, i.e., diag(W) =
[w(e1), w(e2), . . . , w(e|E|)].

III. RECENT ADVANCES IN BRAIN CONNECTIVITY
HYPERGRAPHS

The hypergraph of brain connectivity is a relatively new
area of research, with the first publications appearing only a
few years ago. Most studies focus on the analysis of func-
tional magnetic resonance imaging (fMRI) data in the resting
state [1]–[9], including investigations into various psychiatric
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Fig. 3. Incidence graph (left) and incidence matrix (right) for the example in
Fig. 2.

disorders [8], such as mild cognitive impairment (MCI) [3],
[6], schizophrenia [5], and autism [9], as well as studies on
emotion recognition [7]. Hypergraphs have also been con-
structed for patients with Alzheimer’s disease using structural
magnetic resonance imaging (sMRI) [10] and other modalities
[14]. Furthermore, hypergraphs have been utilized to detect
epileptic seizures using intracranial electroencephalography
(EEG) data [11]. Noninvasive EEG data have been employed
to design hypergraphs for emotion recognition and motor
imagery [13]. In addition, MEG data have been used to
construct hypergraphs of functional brain connectivity based
on event-related coherence during visual perception [15].

One of the earliest applications of hypergraphs in brain
connectivity research was conducted in 2017 by American
researchers from the University of Pennsylvania [1], who
constructed hypergraphs from resting-state fMRI data of 780
adolescents aged 8–22 by analyzing time series data. Later, in
2019, a research group from Tulane University in New Orleans
[2] developed a multi-hypergraph learning method based on
brain connectivity analysis of fMRI data from 900 subjects
aged 8–22.

Hypergraphs based on resting-state fMRI data have also
been applied to classify MCI in 91 elderly subjects with a
mean age of 74 [3]. Using the Anatomical Automatic Labeling
(AAL) atlas, the researchers analyzed time series data recorded
from various brain regions. They extracted sliding windows to
create a dynamic brain functional network (DBFN) using the
Pearson correlation method. From the DBFN, they constructed
a hypergraph, which was then used to create a sparse dy-
namic brain functional network (SDBFN) through hypergraph
manifold regularization. This SDBFN allowed them to extract
features related to MCI and classify this brain disorder.

Another intriguing application of hypergraphs is in emotion
recognition from human facial images. In 2023, researchers

from Cincinnati Children’s Hospital Medical Center in Cincin-
nati, OH, constructed hypergraphs for 1400 adolescents aged
8–22 [7]. By analyzing resting-state fMRI time series, they
created dynamic weighted hypergraph convolutional networks
(dwHGCN) to extract features and classify different emotions.
Hypergraphs for emotion recognition were also constructed
using noninvasive 62-channel EEG data [12]. The authors
analyzed data from 15 subjects who were shown video clips
eliciting various emotions.

The hypergraph approach has also been applied to motor
imagery classification. Zhu et al. [12] analyzed noninvasive
EEG data from 16 subjects in the alpha and beta bands. They
achieved a maximum accuracy of 75% in recognizing the
lifting of the left and right hands using hypergraphs, whereas
non-hypergraph methods yielded an accuracy that was 10%
lower.

Hypergraphs are garnering significant interest due to their
important applications in diagnosing brain diseases, such
as schizophrenia [5], autism spectrum disorder (ASD) [9],
epilepsy [11], and Alzheimer’s disease [10], [14]. Significant
progress in this area has been made by Chinese researchers.
For example, Gao et al. [11] constructed hypergraphs using
intracranial EEG data from 8 patients to detect and classify
epileptic seizures. Additionally, sMRI data from 818 subjects
aged 61 to 84 were used to create hypergraphs for the
detection and classification of Alzheimer’s disease [10]. In
2017, Liu et al. [14] constructed hypergraphs for detecting
Alzheimer’s disease and MCI using multimodal data, includ-
ing fluorodeoxyglucose positron emission tomography (PET),
MRI, and cerebrospinal fluid (CSF). Their study included
data from 99 patients with Alzheimer’s disease, 254 patients
with MCI, and a control group of 118 conventionally healthy
subjects.

These advances in the application of hypergraphs in brain
research highlight their promising potential in psychology,
medicine, and brain-computer interfaces. However, hyper-
graphs have yet to be applied to the study of many cognitive
functions, such as attention and alertness. In our view, these
applications could aid in diagnosing disorders like cognitive
disengagement syndrome (CDS) and attention deficit hyperac-
tivity disorder (ADHD).

IV. HYPERGRAPH OF FUNCTIONAL BRAIN CONNECTIVITY
DURING VISUAL PERCEPTION

Recently, we analyzed data from 15 subjects recorded
during MEG experiments using 306 sensors (102 magne-
tometers and 204 gradiometers) while they visually perceived
a square image with pixels modulated at a frequency of
fm = 6.67 Hz. The experiments were conducted at the Center
for Biomedical Technology at the Universidad Politécnica
de Madrid, Spain. The MEG data were downloaded from
https://zenodo.org/record/4408648#.X-72UdYo-Cc.

We calculated the event-related coherence (ERC) relative to
the resting state (background) when no stimuli were presented
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using the following equation:

ERC =
|CF − CB |

CB
, (7)

where CF and CB represent the coherence during stimulation
and in the absence of stimulation, respectively.

Coherence was measured across four frequency ranges:
delta (0–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), and beta
(13–30 Hz). The brain was divided into eight areas: the frontal,
parietal, temporal, and occipital lobes in both hemispheres.
Using these values, we constructed a hypergraph averaged over
all participants, as shown in Fig. 4.

Fig. 4. Hypergraph (left) and incidence graph (right) of functional brain
connectivity based on event-related coherence during visual perception. The
coherence threshold used is 0.5. The colors represent hyperedges for different
frequency bands: red for delta, blue for theta, green for alpha, magenta for
beta, and yellow for gamma.

Table 1 presents the degrees of the vertices and hyperedges
calculated using equation (3).

TABLE I
DEGREES OF VERTICES AND HYPEREDGES

Vertices Deg(v) Hyperedges Deg(e)
Frontal Left 5 Delta 8

Frontal Right 5 Theta 8
Parietal Left 5 Alpha 7

Parietal Right 5 Beta 7
Temporal Left 3 Gamma 6

Temporal Right 4
Occipital Left 5

Occipital Right 5

V. CONCLUSION

The rapidly developing theory of hypergraph modeling and
optimization is still far from complete. Current hypergraph
modeling methods lack an evaluation of the quality of high-
order correlation modeling, which undermines their credibility.
This gap in the literature highlights the necessity for standard-
ized methodologies that can assess and validate the reliability
of hypergraph models in capturing the complex dynamics of
brain connectivity.

Our findings suggest that each frequency band has a specific
coherence threshold; beyond this threshold, significant changes
occur in network characteristics such as centrality, shortest
path distances, and node degree. Specifically, we observed
strong coherence among all eight lobes in the delta and theta

bands, but only among six lobes in the gamma band. This vari-
ation in coherence underscores the distinct roles that different
frequency bands play in facilitating communication between
brain regions, suggesting that frequency-specific mechanisms
may govern cognitive functions.

Our results support cortico-cortical interactions across
scales, with the derived hypergraph revealing robust activation
patterns in specific brain regions. This emphasizes the impor-
tance of understanding how these interactions contribute to
overall brain function and cognitive processes. Additionally,
the observed activation patterns may serve as biomarkers
for various neurological and psychiatric conditions, providing
potential pathways for diagnosis and intervention.
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[15] N. Peña Serrano, R. Jaimes-Reátegui, and A. N. Pisarchik, “Hypergraph
of functional connectivity based on event-related coherence: Magnetoen-
cephalography data analysis,” Appl. Sci., vol. 14, p. 2343, 2024.

193
Authorized licensed use limited to: Kant Baltic Federal Univ. Downloaded on October 22,2024 at 11:09:06 UTC from IEEE Xplore.  Restrictions apply. 


