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A B S T R A C T

We explore the potential of the contrastive variational autoencoder to detect latent disorder-specific patterns in
the network, analyzing functional brain networks in autistic individuals as the case. Autism spectrum disorder
has long troubled medical practitioners, neurologists, and researchers. It is due to its extremely variable nature,
both neurologically and behaviorally. Though machine learning has been in use to automate autism diagnosis,
little has been done to delve into its intricacies. Here, we attempt to understand the neural mechanisms of
autism spectrum disorder using contrastive variational autoencoder in conjunction with feature engineering.
Our proposed methodology results in a physiologically interpretable classifier with a remarkable F1-score (up
to 95%) and reveals a weak frontal lobe functional connectivity in the alpha band for children with autism
spectrum disorder. Our study suggests an increased focus on efficient frontal lobe EEG sampling. Additionally,
it highlights the importance of the proposed pipeline for understanding the underlying neural abnormalities
in autism over the traditional machine learning pipeline. Thus, the obtained results have proven a contrastive
variational autoencoder to be a promising approach for discovering latent patterns and features in complex
networks.
1. Introduction

Machine learning (ML) possesses the unique capability to iden-
tify hidden structures and non-obvious relationships within multidi-
mensional complex data. This computational ability has initiated the
widespread use of ML in complex systems analysis, including complex
networks [1]. One of the significant fields of ML utilization is in the
healthcare domain. Applications span finding biomarkers from medical
images, accelerating drug candidate screening, automated disease diag-
nosis based on varying symptoms, assessing risk factors for neurological
conditions, and determining phenotype subgroups to enable personal-
ized treatment protocols [2]. The common premise across these use
cases is that machine learning algorithms can find meaningful patterns
hidden under a great deal of noise that proves impenetrable via manual
examination. As healthcare continues generating exponentially greater
volumes of patient data from expanding sources, the use of machine
learning algorithms to uncover insights is accelerating a shift towards
preventive, predictive, and precision medicine.
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In biomedical research, we often come across multiple datasets with
a prime focus on recognizing patterns that are more prominent in
a particular dataset compared to a reference or background dataset,
i.e., identifying patterns unique to data from the treatment group that
are not present in the control group. In a broader sense, this problem
is extremely relevant to the theory of complex networks [3,4]. Con-
trastive machine learning [5] offers a method to detect latent patterns.
Contrastive learning algorithms employ the concept of comparing sam-
ples to reveal shared attributes among data classes and distinguishing
characteristics that differentiate one data class from another. One such
algorithm is contrastive principal component analysis (cPCA) [6]. cPCA
helps to identify salient principal components by recognizing the linear
combinations of features that are abundant in the treatment group
compared to the control group. In contrast, the contrastive variational
autoencoder (cVAE) algorithm [7] can learn nonlinear mappings be-
tween the input and latent space representations. This allows it to
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data mining, AI training, and similar technologies.
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capture intricate patterns present in the data, making it suitable for
tasks where linear techniques (such as PCA) may fall short [7]. Recent
studies [8–10] demonstrate the potential of contrastive learning in
understanding neurological disorders.

We explore the potential of the cVAE to detect latent disorder-
specific patterns in the network, analyzing functional brain networks
in autistic individuals as the case essential to the healthcare domain.
Determining the underlying neural mechanisms of autism spectrum
disorder (ASD) has long challenged health practitioners, neurologists,
and researchers [11]. Machine learning can not only be used for
early autism diagnosis but also to extract meaningful brain connec-
tivity biomarkers from the abundance of connections using data from
non-invasive neuroimaging. The concept is that machine learning can
potentially distinguish atypical neural circuits indicating ASD condi-
tion. Several previous works [12–15] demonstrated such a machine
learning capability, where functional features were found to better
describe the neural mechanism of autism and automated the diagnosis
of autism.

Functional networks refer to connected regions of the brain that
interact to perform cognitive and behavioral functions [16,17]. These
networks provide insights into principles of brain organization and
evolution. Neuroimaging techniques have allowed researchers to map
functional connections in the brain by analyzing correlations in acti-
vation patterns [18]. Disrupted functional connectivity has been asso-
ciated with numerous neuropsychiatric disorders, e.g., ASD, attention
deficit hyperactivity disorder, major depressive disorder, schizophre-
nia, etc. [19–21]. Functional network connectivity, therefore, holds
promise for understanding brain disorders, detecting early disease
stages, predicting outcomes, and monitoring treatment responses [22–
25].

In the last decade, we have witnessed a notable shift from con-
ventional machine learning models [26] to cutting-edge deep learn-
ing techniques [27] for autism diagnoses. Furthermore, researchers
have explored a variety of data sources, transitioning from electroen-
cephalography (EEG) to magnetoencephalography (MEG) [28], making
substantial advancements in the diagnosis of autism. Considering only
resting-state EEG, studies performed a comparative analysis of the
well-known machine learning classifiers, including support vector ma-
chines (SVM), naive Bayes, decision trees, etc. [29,30] to report their
performance. Convolutional neural networks (CNN) and long short-
term memory (LSTM) networks were also been utilized as complex
classifiers [31–33]. Incorporating dynamic traits of EEG in the machine
learning pipeline also proved to be useful in autism diagnosis [34,35].
An interesting advancement is seen in the study [36], where Dong et al.
proposed a novel multi-task learning model with reinforcement opti-
mization for classification. A CNN is used to distinguish autistic from
neurotypical individuals, whereas reinforcement optimization ensures
that the model effectively extracts and combines features.

All aforementioned studies used custom or publicly available
datasets. Different functional connectivity measures were computed
in almost all major frequency bands. Although all studies reported
a prediction accuracy of above 80%, data inadequacy and class im-
balance, however, make it harder to generalize the results. Unfortu-
nately, the above-mentioned studies, devoted much of their focus to
increasing the computational performance of developed models and,
therefore, are void of any explanation regarding the neural mechanisms
of autism. Such models, when deployed in the real world, proved to
be more problematic [37]. Furthermore, to deal with the social world,
autistic individuals make use of a wide variety of techniques. This
behavior is commonly known as camouflaging [38]. Li et al. in this
regard, reported that intellectually able autistic adults show remark-
ably neurotypical resting-state EEG [39]. Therefore, it appears that
autism-specific variations in connectivity patterns are entangled with
or concealed within the broader spectrum of neurotypical patterns.

The current study aims, first, to disentangle autism-specific and neu-
rotypical functional network patterns based on resting-state EEG of chil-
2

dren, second, to explore the functional connectivity subnetwork specific
for ASD by proposing contrastive machine learning coupled with fea-
ture engineering and, third, to demonstrate the potential of cVAE to
detect latent patterns and features in complex networks. Contrastive
learning, specifically cVAE, was used to disentangle and enhance func-
tional connectivity with autism-specific characteristics, whereas feature
engineering was used to figure out functional connections that are most
informative in autism diagnosis. We also demonstrate that interpreting
the functional connections via feature engineering helps in understand-
ing the underlying neural mechanisms of ASD. Finally, we demonstrate
the superiority of our proposed pipeline over the conventional machine
learning approach.

2. Materials and methods

2.1. Participants and data acquisition

We considered resting-state EEG data of two groups of children:
ASD group (149 children) and neurotypical group (149 children). All
children were tested by a clinical psychologist (GP) using the Autism
Diagnostic Observation Schedule (ADOS-2). The inclusion criteria for
ASD children were as follows: age from 2 to 16 years old (𝜇 = 6.4 years,
𝜎 = 3.3 years); an autism diagnosis based on the ICD-10 Criteria
(F84.0); ASD rating by ADOS-2 more than 8; no history of neurological
or mental disease other than autism. The inclusion criteria for the
control group were: age from 2 to 16 years old (𝜇 = 7.2 years, 𝜎
= 3.1 years); no history of neurological or mental disease; no drug
application; ADOS-2 less than 2; no epileptic activity in EEG.

Also, we considered another resting-state EEG data for an inde-
pendent testing. This independently acquired dataset consisted of 102
ASD children (age: 3–12 years, 𝜇 = 7.1 years, 𝜎 = 3.1 years) and 104
neurotypical children (age: 3–12 years, 𝜇 = 7.3 years, 𝜎 = 2.9 years).

During EEG recording, children sat comfortably in a chair after
being asked to sit quietly with their eyes open. All children were
under the supervision of their parents during the EEG recording pro-
cedure. Brain electrical activity was recorded using 19 electrodes for
an averaged duration of 5 min and at a sampling rate of 250 Hz.
Electrodes were placed in accordance with the 10–20 international
system. Electrodes located on the left and right mastoids served as a
joint referent for unipolar montage. Vertical electrooculogram (EOG)
was measured using 2 AgCl cup electrodes located 1 cm above and
below the corner of the left eye, and horizontal EOG was measured
using 2 electrodes located 1 cm lateral to the outer corners of both
eyes. Electrode impedances were maintained below 10 kΩ. The EEG
signals were preliminary cleaned of artifacts using bandpass (1–100 Hz)
and notch (50 Hz) filters and the ICA method. Artifact-free epochs were
further analyzed; group-averaged duration of the epochs was 63.75 s.

2.2. Ethical statement

This study was conducted in accordance with the principles of the
Declaration of Helsinki. The research methodology was approved by
the ethics committee of the Institute of Higher Nervous Activity and
Neurophysiology of the Russian Academy of Sciences (protocol No. 2
of April 30, 2020). The parents of all children signed informed consent
to participate in this study. Children gave verbal consent to participate.

2.3. Functional connectivity

We focused our analysis on functional network constructed in alpha
band (8−12 Hz) since our previous studies [15,25] demonstrated strong
alterations in the specified band. Sensor-level functional connectivity
was quantified using a measure known as ‘‘coherency’’. Coherency
essentially measures how the phases in two EEG signals are coupled
with each other [40]. We utilized the concept of imaginary part of
coherency to capture instantaneous signal interactions uninfluenced by

volume conduction or field spread problem.
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Imaginary part of coherency (𝐼𝐶𝑜ℎ𝑖𝑗 (𝑓 )) at each frequency f is
extracted from the coherency (𝐶𝑖𝑗 (𝑓 )) between two rhythms 𝑥𝑖(𝑡) and
𝑗 (𝑡) as:

𝑖𝑗 (𝑓 ) =
𝑆𝑖𝑗 (𝑓 )

(𝑆𝑖𝑖(𝑓 )𝑆𝑗𝑗 (𝑓 ))1∕2

𝐼𝐶𝑜ℎ𝑖𝑗 (𝑓 ) = 𝑖𝑚𝑎𝑔(𝐶𝑖𝑗 (𝑓 )),

here 𝑆𝑖𝑗 (𝑓 ) represents the cross-spectral density between rhythms 𝑥𝑖(𝑡)
nd 𝑥𝑗 (𝑡). Additionally, 𝑆𝑖𝑖(𝑓 ) and 𝑆𝑗𝑗 (𝑓 ) denote the respective auto-

spectral densities. For the rest of paper, imaginary part of coherency
will be addressed as Icoherency. Icoherency ranges from −1 to 1.
When it is positive, it suggests interaction between 𝑥𝑖 and 𝑥𝑗 , with
𝑥𝑖 preceding 𝑥𝑗 , implying directional information flow from 𝑥𝑖 to 𝑥𝑗 .
Conversely, a negative value suggests the reverse. Since the flow of
information is a topic of another research, we considered only the
absolute value of Icoherency ranging from 0 to 1.

For each studied participant, we constructed 19 × 19 connectiv-
ity matrices by calculating the Icoherency in frequency domain f =
8−12 Hz with the resolution 𝛥f = 0.5 Hz. Subsequently, these Ico-
herency values were averaged across the alpha band to create a single
Icoherency matrix per participant (Fig. 1B).

2.4. Disentangling functional connectivity

Our approach was grounded on the assumption that autism-specific
variations in functional connectivity patterns may be concealed within
the broader spectrum of neurotypical connectivity. In other words, the
functional connectivity patterns observed in autistic individuals bear
significant similarities to those in neurotypical individuals [8,9]. This
similarity presents a challenge for straightforward discrimination using
statistical methods or machine learning classifiers.

We employed contrastive variational autoencoders (cVAE) [7] to
uncover the distinctive connectivity associated with ASD. In this frame-
work, we treated functional connectivity from autistic participant as the
target input ‘‘𝑥𝑡’’, while connectivity from neurotypical participants was
considered as the background input ‘‘𝑥𝑏’’ (Fig. 1C). Given the network’s
symmetry along its diagonal, we inputted only 19 × (19 − 1)∕2 = 171
unique connections. Two probabilistic encoders denoted as 𝑞𝜙𝑧 (𝑧|𝑥)
and 𝑞𝜙𝑠 (𝑠|𝑥) were trained to estimate posterior probabilities for latent
variables 𝑧 and 𝑠, respectively (Fig. 1D). We used 𝑠 to represent latent
variables that are salient or relevant features and 𝑧 to represent irrel-
evant features. Both encoders were structured with dense layers and
the decoder 𝑄𝜃(⋅) mirrored the architecture of encoders, reversing the
order of units (Fig. 1E). Here, 𝜙𝑠, 𝜙𝑧 and 𝜃 are the learning parameters.

We used below mentioned likelihood lowerbound for our target data
𝑥𝑡:

𝑥𝑡 (𝑥𝑡𝑖 ) ≥ E𝑞𝜙𝑧 (𝑧)𝑞𝜙𝑠 (𝑠)
[𝑄𝜃(𝑥𝑡𝑖 |𝑠, 𝑧)]

−𝐾𝐿(𝑞𝜙𝑠 (𝑠|𝑥𝑡𝑖 ) ∥ 𝑝(𝑠)) −𝐾𝐿(𝑞𝜙𝑧 (𝑧|𝑥𝑡𝑖 ) ∥ 𝑝(𝑧))

Similarly for background data 𝑥𝑏, the likelihood is:

𝑥𝑏 (𝑥𝑏𝑖 ) ≥ E𝑞𝜙𝑧 (𝑧)
[𝑄𝜃(𝑥𝑏𝑖 |0, 𝑧)] −𝐾𝐿(𝑞𝜙𝑧 (𝑧|𝑥𝑏𝑖 ) ∥ 𝑝(𝑧)),

where 𝑖 = 1,… , 149. E describes the reconstruction loss, KL describes
the Kullback–Leibler divergence loss, p(s) and p(z) are the prior distri-
butions of the relevant and irrelevant latent variables, respectively.

Likelihood lowerbounds or loss functions (𝑥𝑡 and 𝑥𝑏 ) serve as a
guiding principle during the training of cVAE. They ensure that the
cVAE effectively learns to disentangle relevant and irrelevant features
in the input.

Reconstruction loss: Reconstruction loss measures how well the
decoder 𝑄𝜃(⋅) can reconstruct the input 𝑥∗. It penalizes the overall
model when the generated output deviates from the original input.

Kullback–Leibler (KL) divergence loss: KL divergence loss mea-
sures the discrepancy between the distributions of the latent variables
(s and z) learned by the encoders (𝑞 (𝑧|𝑥) and 𝑞 (𝑠|𝑥)) and the
3

𝜙𝑧 𝜙𝑠
predefined prior distributions, i.e., 𝑝(𝑠) and 𝑝(𝑧). By minimizing the
KL divergence between the learned distributions and the prior distri-
butions, the model is encouraged to distribute relevant features (𝑠) and
irrelevant features (𝑧) appropriately in the latent space.

During training, the encoders and decoder were optimized simulta-
neously to minimize the overall loss function which comprises both the
reconstruction loss and the KL divergence loss. This optimization pro-
cess ensured that the encoders learnt to map the input (𝑥∗) onto latent
variables that effectively capture relevant (𝑠) and irrelevant features
(𝑧). Similarly, the decoder 𝑄𝜃(⋅) learnt to generate output from these
latent variables, reconstructing the original input while separating out
the relevant and irrelevant components.

Once the training was completed and parameters 𝜙𝑠, 𝜙𝑧 and 𝜃 were
learnt, we exclusively utilized the latent variable 𝑠𝑥𝑡 obtained from the
encoder 𝑞𝜙𝑠 . This variable was then concatenated with zeros, having
the same size as z, and inputted into the decoder to generate the
autism-specific functional connectivity 𝑥𝑇 (Fig. 1D–F).

We employed t-test to assess the differences in reconstructed and
original connectivity maps of the ASD group, Bonferroni correction was
further applied to mitigate potential Type I errors.

2.5. Classification

We used a neural network to classify functional connectivity of
autistic and neurotypical participants. After collecting connectivity vec-
tors (𝑥𝑇 , 𝑥𝑡, and 𝑥𝑏), we utilized feature engineering to arrange con-
nectivity features in descending order based on their significance in
distinguishing between the two classes. We then systematically eval-
uated the classification performance by considering different subsets
of features, denoted as 𝑛 top features, with 𝑛 ranging from 1 to 𝑁 ,
where 𝑁 represents the maximum available features, i.e., 171. This as-
sessment enabled us to establish the relationship between classification
performance and the number of top features examined. Subsequently,
we pinpointed the optimal number of features that yielded satisfactory
performance while also minimizing input dimensionality. This reduced
feature set was regarded as the sought-after connectivity structure
capturing the most informative connectivity changes for discrimination.

2.5.1. Feature engineering
Feature engineering holds significant importance in machine learn-

ing and it greatly influences model performance. In our case, the
feature table encompassed 171 unique functional connections/features.
However, using all features indiscriminately is generally unfavorable,
as irrelevant or less relevant features can impair model effectiveness. To
mitigate this challenge, we implemented a filter-type feature selection
algorithm. Filter-type feature selection evaluates input features based
on their intrinsic characteristics, such as feature variance and rele-
vance to the target response. We opted for the minimum redundancy
maximum relevance (mRMR) approach [41] for our specific feature
selection. Through this process, we identified a compact feature set
providing an optimal classification performance for our neural network
classifier.

2.5.2. Shallow neural network
We employed a shallow neural network as a classifier. Fig. 2 shows

a flow chart of entire simulation. Briefly, we constructed two feature
tables after shuffling and concatenating [𝑥𝑡; 𝑥𝑏] and [𝑥𝑇 ; 𝑥𝑏] (Fig. 2B,C)
and fed them one by one into a neural network. The neural net-
work consisted of two hidden layers (ReLU activated) and one output
layer (sigmoid activated) (Fig. 2C). The classes ‘‘Autistic’’ and ‘‘Neu-
rotypical’’ were encoded as 1 and 0, respectively. We used k-fold
cross-validation [42] strategy to encapsulate our entire classification
pipeline. This validation scheme is particularly suited for scenarios
where the dataset size is not exceedingly large. Within the k-fold cross-
validation framework, we randomly partitioned the dataset into 𝑘 folds,
with 𝑘 set to 10 in our case. Subsequently, for each 𝑘 the 𝑘th group was
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Fig. 1. Pipeline of reconstructing autism-specific functional connectivity. A. Balanced number of 149 participants in ASD and neurotypical groups, aged between 2–16 years. B.
Subject-wise computation of Icoherencey matrices in alpha band. C. Reducing symmetrical 19 × 19 Icoherency matrices to Icoherency vectors containing 171 unique functional
connections (19 × (19–1)/2 = 171) per vector. D. Structure of encoders 𝑞𝜙∗

, taking autism-specific connectivity as target input (𝑥𝑡) and neurotypical connectivity as background
input (𝑥𝑏), producing latent variables containing salient (𝑠∗) and irrelevant (𝑧∗) feature information. E. Structure of decoder, taking input salient latent variables for the target input
padded with zeros and producing output without irrelevant information. F. Reconstructed Icoherency vectors (𝑥𝑇 ) for the ASD group losing the functional connectivity similarity
with neurotypical.
designated as the validation set, while others 𝑘 − 1 groups constituted
the training set. Feature engineering was then applied solely to the
training portion of each fold to prevent data leakage. This process was
iteratively performed, allowing each fold to serve as the validation set
while the model was trained on the remaining folds. We conducted
an in-depth evaluation of the classifier’s performance by computing
various classification scores which provide insights into the model’s ef-
fectiveness in distinguishing between autism and neurotypical patterns.
These performance scores encompassed accuracy, recall, precision and
F1-score [43]. Additionally, we plotted the Receiver Operating Char-
acteristic (ROC) curve [44] to assess how well our designed classifier
distinguishes between classes.

2.6. Testing

We evaluated the performance of our proposed pipeline on an inde-
pendently acquired dataset (see Section 2.1). This testing dataset went
4

through the same preprocessing procedure as that of previous data. For
comparison, we computed the same performance scores (i.e., accuracy,
recall, precision and F1-score) and plotted ROC curve.

3. Results

Our initial assessment using original functional connectivity struc-
tures ([𝑥𝑡; 𝑥𝑏]) revealed a limited capability in distinguishing autistic
from neurotypical group. The designed neural network achieved an
accuracy of 48.69% and F1-score of 48.25% using a 10-fold cross-
validation approach (Table 1). This highlights the intertwining of func-
tional connectivity patterns in autistic and neurotypical individuals.

To disentangle autism-specific functional connectivity, we used
cVAE to reconstruct functional connectivity structures. An in-depth
comparison between the original and reconstructed EEG functional
connectivity structures in ASD revealed no statistically significant dif-
ferences (𝑝 > 0.05, Bonferroni corrected, Fig. 3). This fact confirmed
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Fig. 2. Pipeline of classification. A. Icoherency feature vectors. Top represents original autism-specific functional connectivity (𝑥𝑡, see Fig. 1C), middle represents neurotypical
functional connectivity (𝑥𝑏, see Fig. 1C), and bottom represents reconstructed autism-specific functional connectivity (𝑥𝑇 , see Fig. 1F). B. Feature table obtained after shuffling and
concatenating feature vectors. Top incorporates original network ([𝑥𝑡; 𝑥𝑏]) and bottom incorporates reconstructed network ([𝑥𝑇 ; 𝑥𝑏]). Here, 𝑛 ∈ [1, 171], where 171 is the maximum
number of features. C. Shallow neural network containing two hidden layers with ReLU activation and an output layer of one unit with sigmoid activation.
Table 1
Performance scores of the classifier. 10-fold cross-validation scores for each input. A
substantial increase in performance is apparent with the reconstructed and Top-23
input.

Input network Accuracy, % Precision, % Recall, % F1, %

Original ([𝑥𝑡; 𝑥𝑏]) 48.69 ± 6.59 48.90 ± 6.84 47.62 ± 14.08 48.25
Reconstructed ([𝑥𝑇 ; 𝑥𝑏]) 94.95 ± 3.63 92.23 ± 5.81 98.62 ± 1.15 95.32
Top − 23 94.97 ± 3.61 93.19 ± 4.89 97.33 ± 2.66 95.23

the reliability of reconstruction of autism-specific functional connec-
tivity. Fig. 3 is the visual representation of average original autism-
specific, average reconstructed autism specific, average neurotypical
connectivity and their difference.

Upon feeding the reconstructed network ([𝑥𝑇 ; 𝑥𝑏]) into the neural
network, we achieved a substantial accuracy improvement to 94.95%
(F1-score up to 95.32%). Table 1 details the performance scores of
the classifier with the original ([𝑥𝑡; 𝑥𝑏]) and with the reconstructed
networks ([𝑥𝑇 ; 𝑥𝑏]). Fig. 4 presents the ROC curve of the classifier
trained using the 10-fold cross-validation scheme on the first dataset
and the ROC curve for the test dataset.

Additionally, using mRMR approach, we found out the optimal
subset of 23 features that resulted in accuracy of 94.97% (F1-score of
95.23%). Fig. 5 shows the performance of the neural network (Mean
± SD) on the number of top features. It describes how number of
top features impacted the performance of classifier. One can see that
classifier performance is gradually increasing with increase in number
of top features (n) until it experiences saturation at 𝑛 ≥ 23. Thus,
5

Table 2
Top-10 connections in the original and reconstructed networks.

Original network Reconstructed network

F3 - P4 Pz - P4
Fz - T3 F8 - T3
Fz - F4 F7 - Fz
T3 - T4 F4 - F8
T3 - P3 F3 - P4
Fp2 - T4 F4 - C3
P4 - T6 Fp2 - O1
F4 - O1 F4 - P4
P3 - Pz T4 - P4
T5 - T6 Fp1 - F8

we deduce that 𝑛 = 23 is an optimal feature set size providing
sufficient information on functional network. It is worth noting that
cVAE played an important role in disentangling autism-specific pat-
terns from the broader context of neurotypical functional connectivity.
This disentanglement is illustrated in Fig. 6. In original network, we
can see that original autism-specific connectivity is intertwined and
entangled with the neurotypical connectivity. However, an opposite
trend can be observed in the reconstructed network, where the autism-
specific connectivity appears more distinct and separated from the
neurotypical.

The mRMR algorithm allowed us to delve further into the functional
structure’s intricacies. Our analysis revealed that the most informative
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Fig. 3. Differences between the original autism-specific, reconstructed autism-specific, and neurotypical EEG Icoherency connectivity. T-test revealed no significance difference
between the original and reconstructed connectivity of ASD group.
Fig. 4. Comparison of ROC curves. The AUC for the 10-fold cross-validation on the first dataset is 0.93, indicating high performance, while the AUC for the test dataset is 0.86,
indicating generalizability.
connections were primarily situated within the frontal lobe (Fig. 7). Ta-
ble 2 details the name of connections in both original and reconstructed
networks. Moreover, we observed weaker strength in those connections
for ASD group compared with neurotypical children (𝛼 = 0.05, 𝑝 ≤ 1𝑒−6,
𝑡296 = −9.2833, 𝑆𝐷 = 0.0322).

Table 3 presents the performance score of our proposed pipeline
on independent test dataset with 171 and Top-23 features while Fig. 4
shows the ROC curve. The scores and the curve verify the generaliz-
ability of our trained pipeline.

4. Discussion

The current study primarily sought to determine if contrastive
learning could disentangle abnormal functional connectivity in EEG
associated with autism from the broader spectrum of EEG variations in
6

Table 3
Performance scores of the proposed pipeline on the test dataset. ‘‘All’’ refers to 171
features, while ‘‘Top-23’’ refers to 23 features extracted by the mRMR algorithm.
Although the performance decreased by ≈10%, it is still under reasonable margin.

Input features Accuracy, % Precision, % Recall, % F1, %

All 86.41 85.58 87.25 86.46
Top − 23 84.47 85.00 83.33 84.10

neurotypical development. Additionally, this study represents the first
known application of Icoherency as a functional connectivity measure
for detection of ASD-associated features in EEG. The cVAE generated
functional connectivity enabled a simple shallow neural network classi-
fier to achieve substantial accuracy above 90%. Furthermore, the small
subset of critical connections identified via feature engineering gave
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Fig. 5. K-fold cross validation score (accuracy) vs. number of top features. After 𝑛 ≥ 23, classifier performance experiences saturation. Whiskers represent standard deviation (SD).
Fig. 6. Disentanglement of autism-specific connectivity. Scatter plot of top 3 features that contributed most in ASD classification. It is apparent how original autism-specific
connectivity is entangled with neurotypical in original network while opposite can be seen in reconstructed network.
almost equivalent performance compared to using all connections. Most
informative connections were localized in the frontal lobe and showed
reduced strength in autistic individuals as compared to neurotypical
ones.

Most studies employ traditional connectivity metrics which suf-
fer from volume conduction contamination. Volume conduction also
known as field spread problem refers to the complex effects of sensing
electrical potentials at a distance far from their sources. Volume con-
duction has major effects on interpreting the results of EEG experiments
and [40] provides a detailed discussion on these issues. To the best
of our knowledge, this is the first study which uses Icoherency as a
functional connectivity measure to recognize EEG of children with ASD.

The cVAE method helps to identify salient features that may be
otherwise entangled with dominant non-salient features. In case of ASD,
several studies hinted that autism-specific variations are concealed
within broader spectrum of variability in neurotypical development [8,
9,39]. In this study, we disentangled autism-specific variations from
dominant neurotypical characteristics by treating the autistic functional
connectivity as a target data and neurotypical functional connectivity
7

as a background data. Using reconstructed functional connectivity en-
riched with the autism-specific variations, we achieved a discriminatory
accuracy of ≈95% compared to ≈50% when autism-specific functional
connectivity was entangled with neurotypical.

Using feature engineering, this study also identified the small sub-
set of critical functional connections that provides almost equivalent
performance as that of 171 functional connections. It emphasizes the
significance of choosing and interpreting input features for building
classifiers (development of interpretable machine learning algorithms).
The captured functional connections are not only most informative
in classification but are also physiologically interpretable. Moreover,
these physiologically interpretable connections reinforce that cVAE
successfully isolates distinguishing features rather than extracting triv-
ial dissimilarities. This engineering of features has been proven quite
useful in our previous works [15,45].

We have seen that the most informative connections exist in frontal
lobe. This demonstrates that alpha band functional connectivity in
frontal lobe region of autistic individuals is abnormal as compared to
neurotypical peers. This result aligns with several previous studies that



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 185 (2024) 115123M.S. Kabir et al.
Fig. 7. Functional connectivity structures. Top-10 functional connections that con-
tributed most in the ASD classification computed via mRMR. Connections in original
network encompass the whole brain, whereas in reconstructed network, 8 out of 10
connections are in frontal lobe.

demonstrated an alteration in alpha band functional connectivity in
frontal lobe of autistic individuals [15,46–55]. Although several other
studies concluded that it is difficult to generalize that either hyper-
or hypo-connectivity is present in frontal lobe [56–63]. It should be
noted that these conflicting findings can originate from differences in
experimental methods. Variations exist in how studies define frequency
bands, the age of participants, and the metrics used to measure func-
tional connectivity. Nevertheless, it is evident that frontal lobe plays a
decisive role in autism.

The altered functioning of the frontal lobes could be highly as-
sociated to the neurodevelopment disorders [64]. According to the
previous findings human brain develops from the sensory lobes (oc-
cipital, temporal and parietal) to the frontal lobe of the brain — the
last area of the brain to mature [65]. The relatively late develop-
ment of prefrontal cortex in children are related to the protracted
development of prefrontal-dependent ‘‘executive functions’’ such as
planning, decision-making, working memory, cognitive and impulse
control, which continue to develop through the all childhood [66,67].
From the other hand, the maturation of prefrontal cortex continues
from the early infancy and played a very big role in the development
of infant social and emotional functions; so, the frontal lobes could be
described as a brain area with later periods of extended refinement [68]
and not discerned sensitive periods [69]. In spite of early individual
deficits in prefrontal cortex-dependent behaviors had shown high pre-
dictive value in the development of social competence, stress resilience,
and emotional disorders [70,71], it may not be easily assessed and
emerged until the later childhood and especially in the case of altered
development in children with ASD. Based on our findings, we suggest
that increased focus on efficient frontal lobe EEG sampling could enable
more accessible diagnostic functional biomarkers versus blanket scalp
coverage.

Since the last decade, machine learning has been playing a signif-
icant role in automating autism diagnosis. Unfortunately, much atten-
tion was paid to increase performance measure with using complex
state-of-the-art deep learning models. Although quite high performance
was documented, the results were difficult to generalize. To overcome
this problem, we suggest that focus should be given to improve the
interpretability of developed models that can provide an explanation
of neural mechanisms of autism.

5. Conclusion

We demonstrated the applicability of contrastive machine learn-
ing in disentangling autism-specific functional connectivity from the
broader spectrum of neurotypical connectivity. Additionally, we cap-
tured a set of informative and physiologically interpretable functional
8

connections by utilizing feature engineering technique. Their impor-
tance for discrimination autism-specific connectivity from neurotypical
connectivity was verified using a shallow neural network that achieved
F1-score up to 95%.

Our study reveals the alterations in alpha band functional con-
nectivity of autistic children. We observed a weaker connectivity in
frontal lobe for ASD. Based on this finding, we suggest to place greater
emphasis on sampling EEG data from the frontal lobe. Our study
highlights the critical role of thoughtful selection and interpretation
of input features when constructing classifiers. Moreover, the obtained
results have proven a contrastive variational autoencoder to be a
promising approach for discovering latent patterns and features in
complex networks.

We believe our findings could offer a new perspective on using
contrastive machine learning with feature engineering to understand
neurological disorders. We further expect a shift in focus from perfor-
mance metrics to utilizing machine learning to explain the underlying
mechanisms of neurological disorders.

6. Limitations and future work

While this study demonstrates promising results, it suffers from
some limitations that require further work. This study is focused on
autistic children and thus limits the applicability of the findings to other
age groups. Additionally, the current study primarily focuses on the
methodological aspects and does not explore the clinical implications or
translational applications of our findings. In perspective, the proposed
method may help to elaborate the medical decision support system for
ASD diagnosis [72].

In our future work, we aim to address above limitations and expand
the scope of our research. One key objective is to replace the supervised
classifier in our methodology with an unsupervised classifier. A fully
unsupervised pipeline can potentially diagnose autism without relying
on labeled data. Furthermore, we suppose to investigate the potential
of dynamic functional connectivity analysis and task-based EEG data,
which may offer valuable insights into the temporal dynamics and
task-related neural patterns associated with ASD.
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