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ABSTRACT

We propose a new model-free method based on the feed-forward arti�cial neuronal network for detecting functional connectivity in coupled
systems. The developedmethodwhich does not require large computational costs andwhich is able toworkwith short data trials can be used for
analysis and reconstruction of connectivity in experimental multichannel data of di�erent nature. We test this approach on the chaotic Rössler
system and demonstrate good agreement with the previous well-known results. Then, we use our method to predict functional connectivity
thalamo-cortical network of epileptic brain based on ECoG data set of WAG/Rij rats with genetic predisposition to absence epilepsy. We show
the emergence of functional interdependence between cortical layers and thalamic nuclei after epileptic discharge onset.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5117263

Arti�cial neural networks (ANNs) are known to be a powerful
tool for big data processing and classi�cation. They are widely
used in computer science, nonlinear dynamics, robotics, and neu-
roscience for solving tasks of classi�cation, forecasting, pattern
recognition, etc. In neuroscience, ANNs allow recognizing spe-
ci�c forms of brain activity from multichannel electro- (EEG)
or magnetoencephalographic (MEG) data and, therefore, widely
used as a computational core in di�erent brain-computer inter-
faces. Another challenging problem is the analysis of connectiv-
ity structures in big multivariate data. In particular, in neuro-
science, predicting the functional brain network usingmultichan-
nel EEG/MEG signals uncovers mechanisms of neuronal interac-
tion during various physiological or cognitive processes. In this
report, we use recent advances in the area of machine learning
known as feed-forward arti�cial neuronal network to formulate
amethod for detecting functional dependence in unidirectionally
and bidirectionally coupled systems without additional informa-
tion about them.We test ourmathematical approach on themodel
coupled chaotic systems and demonstrate good agreement with
the previous well-known results on generalized synchronization.

Then, we apply our method for the �rst time to reveal functional
connectivity structure in the thalamo-cortical networkof epileptic
brain based on a rodent ECoG data set.

I. INTRODUCTION

Brain, being one of the most complex systems in nature,
exhibits well-pronounced network properties on both anatomical
and functional levels.1–3 The latter implies the existence of func-
tional dependence between the states of remote brain areas, which
is believed to provide mechanisms for neuronal communication and
information transfer within a distributed brain network. Accord-
ing to the recent theories,4–8 neural interaction between distant
brain regions through emergent functional connectivity structures
determines normal brain functioning, including cognitive, motor-
related activity, etc. At the same time, abnormalities in functional
brain networks stand behind various types of brain disorders like
epilepsy, Parkinson’s and Alzheimer’s diseases, brain tumors, etc.9,10

Thus, prediction of functional connectivity between brain areas is
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a crucial approach for brain functioning diagnostics in modern
neuroscience.11

In nonlinear dynamics, the presence of a functional relation
between the dynamics of coupled chaotic systems is known as a
particular type of synchronous behavior called “generalized synchro-
nization” (GS).12–15 This relation may be very complicated, and its
explicit form cannot be found in most cases. Recently, the phe-
nomenon of GS has been an object of extensive research, having both
theoretical and applied signi�cance (e.g., for information transmis-
sion by means of chaotic signals16–18).

The de�nition of the GS regime in the case of unidirectional
coupling accepted hitherto is the presence of a functional relation

y(t) = F(x(t)) (1)

between the drive x(t) and response y(t) oscillator states. In Ref. 14,
this de�nition has been generalized on mutual coupling systems as

F(x(t), y(t)) = 0. (2)

The concept of GS may be essentially applied in neuroscience
for data-driven functional connectivity reconstruction based onmul-
tichannel EEG/MEG data. However, it has not been systematically
used in this context so far. This is due to a number of substantial
limitations of existing techniques for detecting the presence of GS
in neurophysiological data, which is usually characterized by short
duration of time series under analysis, the presence of artifacts and
a high level of noise.19,20 Actually, the most easy, clear, and powerful
auxiliary system approach21 is applicable only for systems with uni-
directional coupling and requires the consideration of an identical
replica of the response system, which is possible in extremely rare
cases. The Lyapunov exponent calculation14,22 is also e�ective only
for model systems with known model equations for which it is pos-
sible to calculate the spectrum of Lyapunov exponents. Finally, the
nearest-neighbor method12,14,23 is a convenient one for GS inference
from experimental data, but this approach requires long time series
for statistical measure estimation in the phase space.

Motivated by the above discussion, in this report, we develop
a model-free data-driven approach for detecting functional depen-
dency inspired by the concepts of nonlinear dynamics and based
on feed-forward (FF) arti�cial neuronal network (ANN). Machine
learning techniques are the “cutting edge” of modern big data analy-
sis. Currently, machine learning techniques are widely applied for the
analysis and prediction of nonlinear systems dynamics.24–26 In partic-
ular, reservoir computing is used for data-driven model-free estima-
tion of the Lyapunov exponents27 and for attractor reconstruction28

of chaotic processes, multilayer perceptron (MLP) detects the non-
linear process of decision-making in the human brain,29 etc. Recently,
Ibáñez-Soria et al.30 applied echo state networks for the detection of
functional interrelations in terms of GS. In their work, they stated
that architecture of feed-forward neural networks “[. . . ] is suitable
for the analysis of stationary problems but, in general, is not ade-
quate to deal with dynamical time-dependent problems.” Thus, their
approach relied on a recurrent neural network (RNN) to provide
the fading memory that allows processing dynamical signals. This
approach required the extensive calculations for RNN training and
relatively long time series for training and validation.

On the contrary, a new developed method shows that FF MLP-
based networks, which are less computationally expensive and able

to work with short data trials, are e�cient in functional connectivity
inference as well. Based on the approximation theorem, MLP with
nonlinear activators in hidden layers is able to approximate any arbi-
trary given function.31,32 FFMLPmay also approximate any function
mapping fromany �nite dimensional discrete space to another.33This
property of FF MLP is especially useful for the approximation of the
functional relation F in (1) considering only an experimental data set
of x(ti) and y(ti), where ti = i1t is the discrete timemoments and1t
is the sample rate.

II. FEED-FORWARD ANN APPROACH

ANN is known to be a biologically inspired computational
system, whose main purpose is to �t unknown and usually com-
plex relationship between input and output data.33 Since functional
connectivity in coupled systems implies the existence of functional
dependence between them, ANN seems to be an essential tool in this
context.

Figure 1 gives a schematic illustration of the proposed ANN-
based method for data-driven functional connectivity detection.
Considering two coupled processes, whose dynamics is represented
by multivariate signals x(t) and y(t), functional connectivity implies
y(t) = F(x(t)). Since fromamathematical point of viewANNde�nes
a function f : x → y, one may use ANN to build a model of the
unknown relation F(•) and predict the y state based on the x state.
Thus, if a true functional relation y(t) = F[x(t)] exists, ANN is able
to approximate it and give a precise prediction y′(t) of the y(t) state
on the basis of x(t). On the contrary, if functional dependence is
not established, ANN fails to learn it and, therefore, is not able to
predict the y-state accurately enough. Summarizing the above, the
criterion for functional connectivity inference is equality of predicted
and actual values of y processes: y′(t) = y(t).

As compared to a recent paper on the application of echo-
state networks (ESNs) to detect GS,30 our approach does not take
into account systems behavior in time domain but veri�es the pos-
sibility for one-to-one mapping F : x → y. Thus, our method is not
subjected to reproducing a systems replicas with exactly the same

FIG. 1. Inference of functional connectivity using the proposed feed-forward
ANN-based approach. Dependence of y on x is detected if the ANN-model of
functional relation F(•) provides accurate prediction y′(t) of y(t)-state by the
x(t)-state.
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dynamical properties using networks with internal memory, and,
therefore, requires a more simple architectures of the ANN. In many
cases, deep ANNs provide high approximation accuracy and reduce
the number of nodes required for the representation of the desired
function (see Ref. 33). So, to achieve satisfying result one should care-
fully set ANN architecture, considering its depth, i.e., the number of
hidden layers, as an important parameter. In particular, throughout
this study we use the traditional FF ANN architecture—multilayer
perceptron.MLP consists of 2 hidden layers, each containing 10 soft-
max units. The number of both inputs and outputs is determined
by the embedding dimensions of coupled systems. Output arti�cial
neurons have a linear activation function.

To infer functional dependence, we consider a pair of mul-
tivariate data trials collected from interacting systems x = {x(t1),
x(t2), . . . , x(tN)} and y = {y(t1), y(t2), . . . , y(tN)}, whereN is the trial
length. Each sample x(ti) is assigned a sample y(ti), so x(ti) is consid-
ered as the input data and y(ti) as the target data. Then, the data are
normalized in the range of [0, 1], shu�ed and separated equally into
training and validation sets. To train the network, we use an Adam
optimizer with a learning rate of 0.001 implemented in the Keras
API.34To avoid possible fails related withmodel over�tting, we check
the divergence between trainig and validation errors—if these values
diverge for the past 10 training epochs, the process is terminated and
starts over. To quantify the degree of functional dependence, we use
a metric called R2-score (coe�cient of determination), which evalu-
ates “goodness of �t” of the original data collected from a response
system y(t) and its ANN prediction y′(t) and is de�ned as

R2 = 1 −

∑D
d=1

∑N
i=1

(

yd(ti) − y′
d(ti)

)2

∑D
d=1

∑N
i=1

(

yd(ti) − ȳd
)2

, (3)

whereD is the number of dimensions, N is the length of the data set,
overbar denotesmean value, yd(t) and y

′
d(t) are the dth component of

response system vector state y(t), and its prediction via ANN, respec-
tively. R2 ranges from 0 to 1 and quanti�es the fraction of data being
well predicted by the ANN model. As R2 = 0.5 indicates that only
a half of data are �tted by the model (almost random prediction),
this value is further considered as a threshold value for functional
dependence inference.

III. INFERENCE OF FUNCTIONAL DEPENDENCE

IN MODEL SYSTEMS

First, we are going to test our FF MLP-based technique to
detect functional dependence in coupled chaotic model systems. For
instance, let us consider a pair of coupled Rössler oscillators which
is a classical nonlinear model for the study of synchronous behavior,
namely, GS,12,21,35

ẋ1,2 = −ω1,2y1,2 − z1,2 + ε1,2 (x2,1 − x1,2),

ẏ1,2 = ω1,2x1,2 + ay1,2, ż1,2 = p + z1,2 (x1,2 − c),
(4)

where u1,2 = (x1,2, y1,2, z1,2)
T are the vector states of interacting

Rössler oscillators. The control parameters a = 0.15, p = 0.2, and
c = 10 have been set identical for both systems, while ω1 = 0.99 and
ω2 = 0.95 by the analogy with Refs. 14 and 35. In the case of unidi-
rectional coupling, we suggest thatmaster oscillator 1 drives response

FIG. 2. Inference of functional dependence in unidirectionally coupled Rössler
oscillators below (ε = 0.03, left column) and above (ε = 0.15, right column) GS
threshold εGS ≈ 0.11.35 (a) and (e) Test sample of response Rössler oscillator
time series x2 (black curve) and its prediction x′

2 via ANN (orange points). (b)
and (f) Phase portraits of response oscillator on the plane (x2,y2) (black) and its
prediction by ANN (x′

2, y
′
2) (orange). (c) and (g) Regression analysis of x2 variable

prediction by ANN model. (d) and (h) Dependence of auxiliary oscillator state xa
on response oscillator state x2 performing verification of functional dependence
between drive and response oscillators.

oscillator 2 and, therefore, ε1 = 0 and ε2 = ε. In the case of mutual
coupling, parameter ε1,2 = ε stands for the coupling strength.

Figure 2 illustrates the recognition of functional dependence
between unidirectionally coupled Rössler oscillators by means of the
proposed FF ANN-based approach. Due to 3D phase spaces of drive
and response systems, we have usedMLPwith 3 inputs and 3 outputs
corresponding to 3 variables (x1,2, y1,2, z1,2). For the training process
of the MLP, we selected time intervals with a duration of 100 (105

samples) after long transient processes. Entire data set 105 pairs of
(u1, u2) has been randomly separated in half into training and vali-
dation sets, each consisting of 5 × 104 pairs. As the input data ofMLP,
we considered the drive system states u1(ti) from the training set and
as the target data the corresponding response system states u2(ti).

To verify the proposed ANN-based approach and reveal GS
regime in the case of unidirectional coupling, we have also used the
traditional auxiliary system approach.21 Along with response sys-
tem u2, we also consider auxiliary system ua = (xa, ya, za)

T having
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the same a, p, c, and ωa = ω2 but starting from di�erent initial
conditions. According to this method, the presence of functional
dependence is detected if ua = u2.

The left column in Fig. 2 shows the dynamics of response
Rössler system and its ANN prediction in the absence of func-
tional relation between drive and response oscillators. Here, coupling
strength ε = 0.03 is chosen below the GS threshold εGS ≈ 0.11 as
known from Ref. 35. It is seen that ANN fails to identify any func-
tional relation between coupled systems and provides completely
inaccurate prediction of both time series x2(t) and phase trajectory
of the response oscillator [Figs. 2(a) and 2(b)]. Regression analy-
sis also evidences that predicted and original data are completely
uncorrelated with R2 = 0.024 [Fig. 2(c)]. The absence of functional
relation revealed by ANN is also veri�ed via the auxiliary system
approach. As seen from Fig. 2(d), the auxiliary system state is not
equal to a response one ua(t) 6= u2(t). By contrast, above GS thresh-
old ε = 0.15 > εGS ANN demonstrates precise enough prediction
of response Rössler system with R2 = 0.997 [Figs. 2(e)–2(g)]. This
identi�es the presence of functional dependence between the states
of coupled systems, which is in agreement with the results of the
auxiliary system approach [Fig. 2(h)].

We note that similar results are obtained in the case of mutually
coupled Rössler systems (Fig. 3). According to the implicit-function
theorem, we can consider Eq. (2) as the de�nition of the implicit
functional relation between coupled system states, and, therefore,
locally, the implicit de�nition of the functional relation between

FIG. 3. Inference of functional dependence in mutually coupled Rössler oscil-
lators below (ε = 0.03, left column) and above (ε = 0.15, right column) GS
threshold εGS ≈ 0.12.14 (a) and (d) Test sample of the second Rössler oscilla-
tor time series x2 (black curve) and its prediction x

′
2 via ANN (orange points). (b)

and (e) Phase portraits of the second oscillator on the plane (x2,y2) (black) and
its prediction by ANN (x′

2, y
′
2) (orange points). (c) and (f) Regression analysis of

x2 variable prediction by the ANN model.

system states may be used, i.e., in our case of mutually coupled sys-

tems (4), u1(t) = F̃(u2(t)) or u2(t) = F̃(u1(t)). Taking into account
these remarks, we can apply the previous FFANN-based approach
to detect the GS regime for mutual coupling using the same train-
ing procedure for ANN. By the analogy with previously considered
case, ANN accurately detects the absence of functional interdepen-
dence below the GS threshold (left column in Fig. 3) and its presence
above the GS threshold (right column in Fig. 3) with R2 = 0.183 and
R2 = 0.997, respectively.

The presented results show that ANN perfectly provides func-
tional connectivity analysis in model systems with R2 ≈ 1 in the
case of the established functional relation and R2 ≈ 0 in its absence,
according to R2-score de�nition [Eq. (3)]. However, applying the
ANN approach to an experimentally obtained data set one should
take into account the presence of noise, which can essentially lower
the accuracy of ANN prediction. So, let us consider the in�uence of
noise level on ANN prediction by adding a noisy component to a
generatedmodel data in a following form: u1,2(ti) = u1,2(ti) + D0ξ1,2,
where ξ1,2 are statistically independent stochastic Gaussian processes
with zero mean, and parameter D0 de�nes the intensity of the noise.
As one could expect, the increase in the noise level reduces the accu-
racy of ANN prediction quanti�ed by the R2-score [Fig. 4(a)]. It also
results in growing variance of x′

2(x2) regression [Figs. 4(b)–4(d)].
Despite that, even at a substantial level of noise D0 = 0.3, ANN pre-
diction is still characterized by su�ciently high value of coe�cient of
determination R2 ≈ 0.7.

We can conclude that the developed FF ANN-based approach is
suitable for GS detection inmodel systems and noisy data. In Sec. IV,
we discuss the application of the developed ANN-based approach to

FIG. 4. Influence of noise on ANN prediction accuracy in the case of functional
relationship between unidirectionally coupled Rössler oscillators (ε = 0.15). (a)
Coefficient of determination R2 vs noise level ξ . (b)–(d) Original (black) and noisy
(blue dots) time series of drive x1(t) (left column) and response x2(t) (middle
column) systems. Right column presents the results of regression analysis. Here,
noise intensity takes the following values: (b) D0 = 0.1, (c) 0.2, and (d) 0.3.
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reveal functional connectivity from experimental neurophysiological
data recorded from rodents with a genetic predisposition to absence
epilepsy.

IV. APPLICATION TO ECOG DATA SET OF EPILEPTIC

BRAIN

Spike-wave discharges (SWDs) are the hallmarks of absence
epilepsy highly pronounced recordings of electrical brain activity and
manifested as hypersynchronuous activity within cortico-thalamo-
cortical network.36 Thus, consideration of SWDs is extremely useful
for the veri�cation of the proposed method for functional con-
nectivity inference from experimental time series. We analyzed a
multichannel set of ECoG recordings taken from Wistar Albino
Glaxo from Rijswijk (WAG/Rij) rats—a genetic animal model giv-
ing rise to spontaneous absence seizures.37 In the experiments, 6
month old WAG/Rij rats were, under deep iso�orane anesthesia,
chronically implanted with stainless steel electrodes in layer 4 to 6
of the somatosensory cortex (ctx4–6), as well as in the (i) posterior
(PO), (ii) ventral-postero-medial (VPM), and (iii) anterior thalamic
nucleus (ANT), respectively. Two weeks after surgery, ECoG signals
were recorded from these structures in freely moving animals. Sig-
nals were �ltered by a band pass �lter with cut-o� points at 1 (HP)

and 100 (LP) and a 50Hz Notch �lter and digitized by WINDAQ-
recording-system (DATAQ-Instruments Inc., Akron, OH) with a
constant sampling rate of 2048Hz. Experiments were carried out in
accordance with the Ethical Committee on Animal Experimentation
of University of Münster.

Let us consider the example of typical functional dependence
emergence during epileptic discharge initiation. Figure 5(a) illus-
trates the typical ECoG signals recorded in cortical layer ctx6 and
thalamic nucleus ANT before and during SWD onset. According to
the described approach, to infer functional dependence between ctx6
and ANT we try to predict the brain state in ANT area based on
one in the ctx6 area using the FF ANN. With this goal in mind, we
also estimated the parameters of the embedding space of the exper-
imental signals using mutual information approach38 to determine
the delay time τ and the false nearest neighbor method39 to deter-
mine the embedding dimensionD. We obtained the following values
τ = 10ms andD = 5 for both signals. Thus, the architecture ofMLP
is such that it contains 5 inputs and 5 outputs. We have consid-
ered the emergence of functional dependence between ctx6 andANT
in a �oating 1-s window, inside which we have calculated the R2-
score Fig. 5(b). One can see that the SWD onset is accompanied by
an increase of R2-score over the threshold value of 0.5 and, there-
fore, the establishment of a functional relationship between ctx6 and

FIG. 5. (a) Typical ECoG signals recorded in cortical
layer ctx6 and thalamic nucleus ANT of epileptic rat’s brain
including SWD beginning. (b)R2-score computed in a float-
ing 1-s window. Illustrations of ANT signal predictability 3 s
before (c) and during SWD onset (d). Plots (e) and (f)
present results of regression analysis for (c) and (d). (g)
Comparison of R2-scores computed 3 s before and dur-
ing SWD onset over 20 seizure trials collected over 5 rats
(p < 0.0001 via Wilcoxon signed-rank test for related sam-
ples). Dashed line in (b) and (e) defines R2 threshold level
of 0.5.
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ANT. Figures 5(c) and 5(d) present an illustration of the possibility
to predict ANT signal from the ctx6 signal in a 1-s interval during
the background activity and the beginning of SWD, respectively. It
is clearly seen from regression analysis in Figs. 5(e) and 5(f) that
the background activity is characterized by low prediction accuracy,
while the pathological epileptic activity is characterized by a high
R2-score value.

This trend is observed for all analyzed rats. Figure 5(g) shows
the comparison ofR2-score averaged over the 40 trials of background
and epileptic activity, collected from 6 di�erent rats. There is a signif-
icant di�erence between two samples of R2-scores, con�rmed by the
Wilcoxon signed-rank test for related samples (p < 0.0001). Besides,
one can see that median value of R2-score during seizure onset
exceeds the threshold value of 0.5. Thus, we conclude that functional
link between ctx6 and ANT areas emerges in all the considered rats.

Based on the considered approach for functional connectivity
diagnostics in experimental time series identi�ed on a pair of ECoG
channels, we have reconstructed the structure of functional links
in the thalamo-cortical network during background (3 s prior SWD
onset) and pathological (1 s after SWDonset) activity shown in Fig. 6.
One can see that during the background activity [Figs. 6(a) and 6(c)],
the thalamic nuclei and cortical layers are not related to each other by
functional relationships, but only intracortical (ctx4–ctx5, ctx5–ctx6)
and intrathalamic (ANT–PO, ANT–VPM, PO–VPM) connections
are observed. At the same time, the pathological activity shown in
Figs. 6(b) and 6(d) is accompanied primarily by the increase of

FIG. 6. Functional connectivity matrices in cortico-thalamo-cortical epileptic brain
network reconstructed via the FF ANN-based approach (a) 3 s before and (b)
1 s after SWD onset over all 6 participated animals, and corresponding net-
work representations (c) and (d). Here, black lines indicate emergent functional
links, whereas orange lines highlight links with significantly increasing R2-score
(confirmed by Wilcoxon signed-rank test with Bonferroni correction). Each link is
characterized by a median value of R2-score.

functional dependence between the thalamic nuclei and cortical lay-
ers along with a signi�cant increase of intrathalamic connectivity
[orange lines in Fig. 6(d)].

V. CONCLUSION

In conclusion, we have proposed a machine learning based
method for detecting functional connectivity in unidirectionally
and mutually coupled systems without additional information about
analyzed systems. We show for the �rst time that feed-forward ANN
(e.g., MLP) with nonlinear units is e�cient in inference of func-
tional dependence between considered systems. We apply a novel
approach to the chaotic Rössler system and demonstrate good agree-
ment with the previous well-known results in GS studies. Then, we
use our method to predict the functional network of an epileptic
brain based on ECoG data set of WAG/Rij rat with genetic predis-
position to absence epilepsy. We show the formation of functional
relations between cortical layers and thalamic nuclei after the onset
of an epileptic discharge. The developed feed-forward ANNmethod
which does not require large computational costs and which is able
to work with short data trials contribute to methods of analysis and
prediction of connectivity in multichannel experimental data of dif-
ferent nature (e.g., biological, neurophysiological, climate, big data
sets, etc.).
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