
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

External stimulus classification by
Hodgkin-Huxley neural network

Andreev, Andrey, Pisarchik, Alexander

Andrey V. Andreev, Alexander N. Pisarchik, "External stimulus classification
by Hodgkin-Huxley neural network," Proc. SPIE 11847, Saratov Fall Meeting
2020: Computations and Data Analysis: from Molecular Processes to Brain
Functions, 118470H (4 May 2021); doi: 10.1117/12.2591339

Event: Saratov Fall Meeting 2020, 2020, Saratov, Russian Federation

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 07 May 2021  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



External stimulus classification by Hodgkin-Huxley neural
network

Andrey V. Andreeva, Alexander N. Pisarchikb,a

aNeuroscience and Cognivite Technology Laboratory, Center for Technologies in Robotics and
Mechatronics Components, Innopolis University, Universitetskaya Str. 1, Innopolis, 420500,

Russia
bCenter for Biomedical Technology, Technical University of Madrid, Campus Montegancedo,

Pozuelo de Alarcon, 28223, Spain

ABSTRACT

We propose to use the chimera-like state for stimulus classification in a spiking neural network of bistable HH
neurons. As a stimulus, we use an external pulsed current applied to the network. Additive noise makes the
neurons nonidentical so that the external pulse switches only a part of the neurons from the resting to the
oscillatory state depending on the pulse amplitude. For classification, we use the neural network and two output
neurons. The network is trained on two external pulses with different amplitudes to adjust coupling strengths
between neurons in the main network and output neurons. We investigate influence of inhibitory coupling
between output neurons on classification of input signal with different amplitudes.
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1. INTRODUCTION

The dynamics of complex networks has attracted much attention in recent years.1–6 Especially, the networks
of spiking neurons or neuron-like elements take a significant part of this area7–13 along with neural networks of
human brain.14–17 There are many interesting phenomena which have been found in such networks and which are
still investigating. Especially, chimera state has been elaborately investigated during the past decade in a wide
range of systems.18–23 It was firstly observed in nonlocally coupled identical phase oscillators as the coexisting
coherence and incoherence patterns by Kuramoto and Battogtokh.24 Later, chimera state has been observed
in leaky integrate-and-fire neurons with excitatory coupling,25 as well as in networks of FitzHugh-Nagumo26

and Hindmarsh-Rose neuronal oscillatory systems.27 Chimera-like states have also been analyzed for non-locally
coupled Hodgkin–Huxley oscillators28 and in many other different neuronal network models.

One of the important questions here is a control and practical application of chimeras in neuronal networks.
Earlier, the authors of29 described pinning control of coherent and incoherent domains in chimera patterns for
ensembles of nonlocally coupled FitzHugh-Nagumo systems. Also a control by an external current pulse was
presented in the network of Hodgkin-Huxley neurons.30 One of the possible application of chimera state is using
it in spiking neural network (SNN) classifier.

It is believed that the SNN-based computations have great potential31,32 and, theoretically, can reach enor-
mous computational efficiency like real brain circuits.33 Nowadays many studies attempt to use SNNs for practical
applications, for example, for speech recognition,34 audio-visual pattern recognition,35,36 robot controlling,37 etc.
The use of spiking neurons as classifiers in pattern recognition problems of visual information recorded from a
silicon retina,38 and in simulation of sound information processing in the auditory cortex39,40 has been reported.

In this paper, we propose a spiking neural network that can be used for classification of external signal. As a
model of neurons we use Hodgkin-Huxley neurons as one of the most realistic one. Work of the classifier based
on the activation of a different number of neurons depending on the external current amplitude.30 We train it
for 2 external current pulses with different amplitudes by adaptation of the couplings between neurons of the
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main network and 2 output neurons. We investigate influence of inhibitory coupling between output neurons on
classification of input signal with different amplitudes. We show that there is a threshold value of the pulse’s
amplitude before which the network classifies the input signal as the first type and as the second type after it.

2. NUMERICAL MODEL

We consider the network of N = 100 Hodgkin-Huxley neurons. The time evolution of the transmembrane
potential of the HH neurons is given by41

Cm
dVi
dt

= −gmaxNa m3
ihi(Vi − VNa) − gmaxK n4i (Vi − VK)−

− gmaxL (Vi − VL) + Iexi + Isyni

(1)

where Cm = 1µF/cm3 is the capacity of cell membrane, Iexi is an external bias current injected into a neuron in
the network, Vi is the membrane potential of i-th neuron, i = 1,...,N , gmaxNa = 120mS/cm2, gmaxK = 36mS/cm2

and gmaxL = 0.3mS/cm2 receptively denote the maximal sodium, potassium and leakage conductance when all
ion channels are open. VNa = 50mV , VK = −77mV and VL = −54.4mV are the reversal potentials for sodium,
potassium and leak channels respectively. m, n and h represent the mean ratios of the open gates of the specific
ion channels. n4 and m3h are the mean portions of the open potassium and sodium ion channels within a
membrane patch. The dynamics of gating variables (x = m,n, h) are given:

dxi
dt

= αxi(Vi)(1 − xi) − βxi(Vi)xi, x = m,n, h (2)

αx(V ) and βx(V ) are rate functions, described by42

αm(V ) =
0.1(25 − V )

exp[(25 − V )/10] − 1
(3)

βm(V ) = 4 exp(−V/18) (4)

αh(V ) = 0.07 exp(−V/20) (5)

βh(V ) =
1

1 + exp[(30 − V )/10]
(6)

αn(V ) =
0.01(10 − V )

exp[(10 − V )/10] − 1
(7)

βn(V ) = 0.125 exp(−V/80) (8)

Isyni is the total synaptic current received by neuron i. We consider coupling via chemical synapses. The
synaptic current takes the form43

Isyni =
∑

j∈neigh(i)

gcα(t− tj0)(Erev − Vi) (9)

where the alpha function α(t) describes the temporal evolution of the synaptic conductance, gc is the maximal
conductance of the synaptic channel and tj0 is the time at which presynaptic neuron j fires. We suppose α(t) =
e−t/τsynΘ(t), there Θ(t) is the Heaviside step function and τsyn = 3ms. The initial conditions of all neurons
correspond to the oscillatory basin of attraction of individual neuron.
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Figure 1. (a) Time series of the external current and (b) time-space plot of the membrane potential of all neurons from
the main network N for Iep = 1.35 µA/cm2.

3. RESULTS

We consider the classifier consisting of the main network of N = 100 HH neurons and Nout = 2 output neurons.
We apply a short pulse of external current Ie as an input signal to the main network and one of the output
neurons should react on it. In order to achieve it, we use the results from.30 It has been shown that different
groups of neurons can be switched from the resting state to the active one by a short pulse of external current.
Moreover, network topology plays a crucial role because node stability depends on its degree. Due to scale-free
topology characterized by the presence of nodes with extremely high degree we use this topology in the classifier.
The adjacency matrix for the SF network is generated using the Barabási-Albert algorithm,44 which creates a
graph of N = 100 nodes having m = 5 edges each.

As we apply a short pulse of external current Ie to N neurons. It is modeled by a boxcar function as

Ĩe(t) = Ie0 + Iep [H(t− t0) −H(t− t0 − ∆t)], (10)

where Ie0 is the amplitude of the constant current, Iep is the amplitude of the external pulse, H(•) is the Heaviside
step-function, t0 = 300 ms is the moment of time when the pulse is applied, and ∆t = 300 ms is the time period
of the pulse. We choose Ie0 = 6.25 µA/cm2 corresponding to the resting state of HH neuron’s dynamics.

Based on the results from30 we choose coupling strength between neurons inside the main network gmc = 0.02.
Initially, there are no couplings between the main network and the output neurons, so ginc = 0. Then, we train
the network by adapting these couplings. We apply the external pulse with a certain amplitude and want to
achieve activation of one neuron during the pulse while the second one should be inactive. We apply the external
pulse with Iep = 1.3 µA/cm2. Figure 1 illustrates how the main network reacts on the external pulse. Initially, all
neurons generate one or more spikes depending on the initial conditions. Then, during the transient process from
0 to 300 ms all of them go to the resting state according to the chosen value of the constant current Ie0 = 6.25
µA/cm2. Then, at t = 300 ms the external stimulus is applied. It induces some neurons to become active, at that
number of such neurons depends on the pulse amplitude: higher Iep activates more neurons.30 During the pulse
some neurons can return to the resting state, the oscillations of some active ones can be suddenly terminated,
but most of them generate spikes the most part of the pulse period. At t = 600 ms the pulse stops applying on
the network, and most of the neurons being active during the pulse stops generating spike immediately, while a
small number of them continue spike’s generation for a while but at the end, they return to the resting state.
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Figure 2. Time dependencies of the membrane potential of the first (blue line) and the second (red line) output neurons
for Iep = 1.2 (a), 1.25 (b), 1.3 (c), 1.35 (d), 1.4 (e), 1.45 (f), 1.5 (g). goutc = 0.

Firstly, we consider a classifier without inhibitory coupling between output neurons, so goutc = 0. We train
our network in such a way, so the first output neuron activates for the pulse with amplitude Iep = 1.3 µA/cm2,
and the second one activates for Iep = 1.4 µA/cm2. Then, we investigate how the network responds to different
external pulse amplitudes.

For Iep = 1.2 µA/cm2 only the first output neurons is active (Fig. 2(a)). Increasing the pulse amplitude leads
to the activation of the second one. Fig. 2(b) illustrates the dynamics of output neurons for Iep = 1.25 µA/cm2.
One can see that the first neuron generates 18 spikes during the whole pulse applying while the second one
generates only 5 spikes during the second half of the pulse. As we have trained the network for Iep = 1.3 and 1.4
µA/cm2, Iep = 1.35 is a middle point, and for this value both output neurons generate equal number of spikes
(Fig. 2(d)). This case corresponds to the full uncertainty and the classifier cannot make a decision. Further
increasing of the pulse amplitude leads to the reverse situation when the second neuron generates more spikes
than the first one. But for Iep > 1.44 the first output neuron generate a few spikes(Figs. 2(f,g)).

Then, we consider a classifier with inhibitory couplings between output neurons with different coupling
strengths (Fig. 3). One can see that adding inhibitory coupling between output neurons leads to increasing the
number of spikes generated by them. For strong coupling between output neurons (goutc = 0.4) both of them
continues to be active even after the pulse stops applying (Fig. 3(e)).
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Figure 3. Time dependencies of the membrane potential of the first (blue line) and the second (red line) output neurons
for goutc = 0 (a), 0.1 (b), 0.2 (c), 0.3 (d), 0.4 (e). Iep = 1.35.

4. CONCLUSION

We have proposed a classifier consisting of Hodgkin-Huxley neurons. It is based on the activation of a different
number of neurons depending on the external current amplitude. We have considered the classifier consisting
of the main network of N = 100 HH neurons and 2 output neurons. We have trained it for 2 external current
pulses with different amplitudes by adaptation of the couplings between neurons of the main network and the
output neurons: we increased the coupling strength of i-th neuron with one output neuron and decreased with
another one every time when i-th neuron generate spike during the pulse applying.

We have considered two variations of the classifier’s structure: with the presence or without inhibitory
coupling between output neurons. We have investigated how the network responds to different external pulse
amplitudes. We have shown that there is a threshold value of the pulse’s amplitude before which the network
classifies the input signal as the first type and as the second type after it. Adding inhibitory coupling between
output neurons leads to increasing the number of spikes generated by them.
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