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Abstract This study explores the relationship between long-range temporal correlations in brain activity,
measured through detrended fluctuation analysis of electroencephalogram signals, and performance on an
intelligence test (Raven’s Progressive Matrices) in children. Specifically, the research focuses on identifying
reliable neurophysiological markers of cognitive functions by analysing EEG data from school-aged children
(8–10 years old) in a resting state. The DFA scaling factor in the alpha range of the frontal cortex was
found to be a significant predictor of RPM performance, with results validated using machine learning
methods. These results highlight the importance of long-range temporal correlations in brain activity as a
potential neurophysiological marker for assessing cognitive abilities.

1 Introduction

Problem overview. Intelligence is a complex and multifaceted cognitive function that affects the ability to learn,
socialise and adapt [1]. Intelligence plays a key role in cognitive development, which is viewed as a process of
skill acquisition that depends on the interaction of a variety of factors [2]. Assessment of intelligence is important
not only in determining children’s performance at school [3], but also in predicting their success in later life. The
research shows that higher cognitive abilities contribute to better adaptation to the educational process, learning
new knowledge and skills, and preparation for future professional activities [4].

To track the dynamics of cognitive development, it becomes necessary to regularly assess the level of intelligence
[5]. Frequent assessment allows to adjust developmental programmes and adapt educational methods to individual
needs [6], which is especially important for children, as this is the period when the foundations of their intellectual
growth are being laid [7].

By far the most common methods for assessing intelligence and cognitive ability are standardised tests and
questionnaires [8]. Despite their prevalence, such methods have drawbacks that may reduce their accuracy and
reliability.

First, as demonstrated by Clark and Maguiri’s study, questionnaires may not always capture the reported
cognitive functions in sufficient detail, which can lead to scoring errors [9, 10]. Second, traditional methods are
prone to the learning effect of repeated testing. As demonstrated by Faletti and colleagues, administering repeated
tests can lead to higher scores without a corresponding improvement in cognitive function [11]. This phenomenon
can lead to distorted data regarding cognitive changes. Such effects make regular diagnosis difficult and make it
challenging to monitor cognitive change over time, which is particularly important in the context of early learning
and prevention [12, 13]. These problems emphasise the need for more reliable assessment methods that are not
influenced by mentioned effects and external factors. In addition, existing questionnaires often assume a specific
educational and cultural context, making them difficult to apply to children with different educational and cultural
backgrounds [14].

The development of machine learning (ML) and neurophysiological data analysis has opened new opportunities
for objective assessment of cognitive functions. For example, ML algorithms are now being used for early detection
of cognitive impairment based on cognitive abilities and neuroimaging data [15]. However, much of these algorithms
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still rely on test results and questionnaires to categorise levels of cognitive function, which exacerbates the problems
associated with the subjectivity of assessment.

This emphasises the need to develop new objective methods of cognitive assessment that can be used in conjunc-
tion with existing subjective approaches, thereby increasing diagnostic accuracy and promoting the development
of neuroadaptive systems aimed at improving students’ cognitive abilities [16].

Electroencephalography (EEG) offers unique opportunities to address this issues. For decades, this method has
been actively used to study the dependence between brain activity and cognitive abilities. Classical studies such
as a work of Gasser et al. [17] have demonstrated that EEG parameters such as frequency peaks and spectral
characteristics have significant positive correlations with IQ, especially in children with mental retardation. The
use of computerised data analysis has made it possible to identify patterns of brain activity associated with higher
cognitive performance, which opens new perspectives for assessing and monitoring intelligence.

In subsequent years, the focus of research shifted to the study of coherence and phase delay. Thatcher et al.
[18] showed that a decrease in phase delay and synchronisation of processes in the frontal lobes of the brain are
associated with high IQ. These results emphasise the significance of the analysis of neuronal synchronisation as a
key mechanism of cognitive performance.

In parallel, special attention was paid to EEG alpha rhythms. Doppelmayr et al. [19] found that the power
of alpha rhythms in the upper range is positively correlated with semantic memory and intelligence, supporting
the “neural efficiency” hypothesis, according to which more intellectually developed people demonstrate more
economical use of brain resources. Interestingly, different sub-ranges of the alpha rhythm have different dependences
with cognitive processes: the upper alpha range correlates better with semantic memory, whereas the lower ranges
are related to learning and attention. This indicates the multi-layered nature of the interactions between brain
rhythms and intelligence.

Additionally, Anokhin and Vogel [20] focussed on alpha rhythm frequencies and their relationship to verbal
cognitive abilities. They showed that people with a higher frequency of alpha rhythm in the frontal lobes have
improved abilities in solving verbal tasks.

Modern approaches emphasise information flows in the brain. A study by Luo et al. [21] demonstrated that the
intensity of information flows, measured through the phase slope index, correlates with IQ, indicating the role of
effective functional connectivity in cognitive performance.

Thus, the use of EEG provides a deeper understanding of the complex mechanisms underlying intelligence and
offers promising solutions for the development of objective methods for assessing cognitive functions. A promising
approach is the use of neurophysiological biomarkers combined with ML approaches [22], which offer opportunities
for objective assessment of cognitive function and are not influenced by external factors [23].

Contribution of the study. The objective of this study is to identify reliable and objective predictors of
child cognitive function based on the results of the Raven’s progressive matrices (RPM) test, a widely recognised
nonverbal measure of fluid intelligence. The RPM test assesses problem-solving and abstract reasoning skills, which
are critical for learning and adaptation.

This study investigates the potential of using brain electrical activity signals as biomarkers for predicting IQ
obtained during the RPM test. In particular, we analyse EEG data using the detrended fluctuation analysis (DFA)
method to investigate the presence of long-range temporal correlations between time series [24]. In the field of
brain research, the DFA method has been applied specifically to EEG signals with the objective of studying the
complexity and dynamics of brain activity [25, 26]. The analysis of the DFA scaling factor calculated for EEG
signals allows researchers to gain insight into cognitive processes, neural efficiency and the basic mechanisms of
brain function. Furthermore, the DFA method has been demonstrated to be a valuable tool in the investigation of
neurological disorders and their impact on brain activity [27–31]. However, there is currently no clear understanding
of the relationship of the DFA scale factor to traditional brain activity metrics, such as phase synchronisation
between brain regions.

Therefore, in this study, we have formulated two hypotheses that we intend to test. (i) The first hypothesis
aims to determine whether DFA scaling factor can be used as a reliable predictor of IQ level in schoolchildren
obtained during the RPM test.. We aim to investigate the potential relationship between the DFA scaling factor,
which is a measure of long-range temporal correlations in time series of brain activity, and participants’ IQ scores.
(ii) The second hypothesis aims to investigate the correlations between the DFA scaling factor and EEG network
metrics. By investigating these correlations, we can gain insight into the relationship between the complexity of
brain activity, as reflected by the DFA scaling factor, and functional brain networks.

Thus, the novelty of the work consists in applying the DFA method to analyse children’s cognitive abilities, and
in investigating the links between this parameter and metrics of functional brain connectivity.

The study design is presented in Fig. 1. First, we consider an experimental dataset consisting of raw EEG
recordings from schoolchildren aged 8–10 years old at rest. We perform basic preprocessing, including bandpass
and notch filtering, and removal of eye-movement and muscle artefacts using independent component analysis.

Second, the data are processed using two different approaches: phase coherence between EEG channels and
detrended fluctuation analysis. As a result, the following characteristics are obtained: within-regional phase-locking
value (PLV), between-regional PLV and DFA scaling factor.
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Fig. 1 Structure of the study. Block 1: Experimental EEG recordings of 8–10 year old schoolchildren. The insets show
examples of raw EEG data as well as the preprocessing pipeline. Block 2: We consider two different approaches for data
processing: phase coherence variation and detrended fluctuation analysis. The corresponding subplots schematically show
the processing results of each method. Block 3: exploratory data analysis is used to identify main statistical effects. Block 4:
Regression analysis is used to identify the frequency range and brain regions that contribute meaningfully to IQ prediction.
The subplot shows the relationship between the scaling factor of the DFA scaling factor in alpha range at frontal region and
IQ. Block 5: The result of training the classifier using support vector machine (SVM) method. The classifier is trained on
the features identified using regression analysis. The table shows the performance of the classifier. Block 6: The importance
of features is ranked using Boruta’s method. Here is an example of ranking the importance of features

Third, we used the exploratory analysis of the obtained values of the DFA scaling factor, within-regional PLV
and between-regional PLV to identify main statistical effects.

Fourth, using regression analysis, we test the ability to predict IQ based on the obtained characteristics. In
addition, we identify the frequency range and brain region that contribute meaningfully to the prediction of IQ
level.

Fifth, we apply the ML approach to classify subjects according to intelligence level. We train an support vector
machine (SVM)-based classifier on the features identified by regression analysis. Our results show high classification
accuracy (F1-score = 0.75).

Sixth, we identify the features most important for classification using Boruta’s method. We observe that only
right frontal EEG channels are significant for classification.
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2 Methods

2.1 Participants

A total of 24 schoolchildren (10 girls and 14 boys aged between 8 and 10 years) participated in the study. All
the children attended the same school and were in the third or fourth grade. All participants were conditionally
healthy with no history of medical brain conditions. None of the subjects had previously participated in similar
studies.

All subjects participated in the experiment of their own volition, but only after obtaining the approval of their
parents. Parents were provided with comprehensive information regarding the aims and methodology of the study,
and were afforded the opportunity to inquire about any aspects of the study that they deemed pertinent. They
were also given detailed responses to their queries. In this manner, parents were furnished with all the requisite
information to determine whether they endorsed their child’s involvement in the study. Thereafter, the parents
signed informed consent.

This study was conducted in accordance with the tenets set forth in the Declaration of Helsinki and was approved
by the Ethics Committee of Immanuel Kant Baltic Federal University (Protocol No. 32 of 04.07.2022).

2.2 Experimental procedure

The experimental study was comprised of two distinct components: an assessment of the subject’s performance on
Raven’s progressive matrices (RPM) and a two-minute EEG recording conducted in a resting state.

The RPM is a non-verbal test that is commonly used to measure an individual’s general intelligence and
abstract thinking abilities [32]. Additionally, RPM is regarded as a means of evaluating fluid intelligence [33].
Fluid intelligence is frequently linked to the capacity to resolve novel logical challenges, which in turn is associated
with a number of key abilities, including comprehension, problem-solving and learning [34].

The RPM test comprises 60 multiple-choice questions, distributed across five sets of increasing difficulty. Each
item is presented as a visual stimulus, comprising a pattern of dots, lines, and shapes, with a missing part (see
example in Fig. 2). The objective for the test taker is to complete the image by selecting the option that best fits
the blank space. The results of the RPM are converted into an intelligence quotient (IQ) according to the age of
the test taker.

In the present study, the participants completed the RPM in standard format with pen and paper.
To reduce the potential stressors associated with the experimental procedure, we conducted EEG recordings in a

setting that was familiar to the subjects. Furthermore, we also used a mobile EEG recorder instead of a stationary
one to avoid limiting the participants’ movement. The EEG recordings were conducted at the educational facility
in the morning in a room with natural light and minimal external stimuli. Wherever possible, external stimuli such

Fig. 2 Example of task in
Raven’s progressive
matrices
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Fig. 3 Scheme of EEG
channel segmentation into
four zones: frontal, central,
occipital-parietal and
temporal
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as loud sounds and bright lights were minimised. During the recording the subject was sitting in a comfortable
chair. The subject was instructed to remain relaxed, seated and with their eyes open.

Furthermore, the educational success of the experimental participants was evaluated by considering their aver-
age grades in all subjects studied during the school year. The subjects included: Mathematics, Native language
(Russian), Literature, Foreign language (English), Biology, Physical education, Music, Art, and Technology.

2.3 EEG recording and preprocessing

EEG signals were recorded using “LiveAmp” device (Brain Products, Germany) with Ag/AgCl ActiCap active
electrodes. A total of 64 channels were recorded in accordance with the “10-10” system, with ground and reference
electrodes positioned at the “Fpz” and “Fz” positions, respectively. Prior to the commencement of data acquisition,
the scalp was treated with “NuPrep” abrasive gel to enhance skin conductivity. Additionally, “SuperVisc” conduc-
tive gel was applied during electrode placement to attain optimal impedance values. Prior to the commencement
of the experiment, the impedances were verified to ensure that the desired value of < 25 kΩ was achieved.

The EEG signals were recorded at a sampling rate of 1000 Hz and subsequently processed with filters, namely a
bandpass filter with cut-off points of 1 Hz and 100 Hz, and a 50-Hz notch filter. Physiological artefacts related to
heart rate and eye movements were removed using independent component analysis (ICA) [35]. The implementation
of ICA was conducted using the Fieldtrip toolbox for MATLAB [36]. The EEG dataset comprising 64 channels
was decomposed into 64 independent components. Subsequently, components exhibiting artefacts were identified
and removed, after which the EEG signals were reconstructed.

The neural activity of the brain was analysed at rest over a period of 120 s in four frequency ranges, which
correspond to the main brain rhythms: theta- and delta-bands (1–7 Hz), which reflect low-frequency activity;
alpha-band (6–13 Hz); beta1-band (13–20 Hz) and beta2-band (20–30 Hz). The recording electrodes were grouped
into four zones: frontal (Fp1, Fp2, AF7, AF3, AFz, AF4, AF8, F5, F3, F1, Fz, F2, F4, F6), central (FC5, FC3,
FC1, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6), occipital-parietal (P5,
P3, P1, P2, P4, P6, PO7, PO3, POz, PO4, PO8, O1, Oz, O2) and temporal (F7, F8, FT9, FT7, FT8, FT10, T7,
T8, TP9, TP7, TP8, TP10, P7, P8). The chosen zones are illustrated in Fig. 3.

2.4 Detrended fluctuation analysis

Long-range temporal correlations were estimated utilising the DFA method [37]. DFA represents a variant of
mean-square random walk analysis, entailing the fitting of a slow nonstationary component, conceived as a trend,
with the subsequent characterisation of fluctuations around the signal profile, including deviations from the trend.

The DFA was calculated in the four frequency ranges [f1, f2] considered in Sect. 2.3. For each frequency ranges,
the DFA was calculated for each channel (i = 1, . . . , C;C = 64).

The calculation of the DFA for each i -th channel of the EEG Xi(t) includes the following steps.
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1. Filtering the signal Xi(t) in the frequency range [f1, f2]. We used a finite impulse response (FIR)
filter whose order was set to 2/f1 s, where f1 is a lower frequency of analysed frequency range. Thus, we can
guarantee that the filter window will cover at least two cycles of oscillations with frequency f1 Hz.

2. Calculation of the amplitude envelope using the Hilbert transform. The envelope amplitude of
the EEG signal was used for further analysis, as it allows us to investigate slow dynamic patterns of neural
activity related to cognitive functions and brain state [31, 38, 39]. This makes the analysis more informative
and physiologically meaningful. A Hilbert transform X̂i(t) is performed on the filtered signal Xi, [f1, f2](t) to
produce a phase-shifted signal [40]:

Xi(t) =
1
pi

∫ ∞

−∞

Xi, [f1, f2](τ)
t − τ

dτ. (1)

The analytic signal Zi(t) is obtained as the sum of the original signal and its Hilbert transform: Zi(t) =
Xi, [f1, f2](t) + jX̂i(t), where j is an imaginary unit. The envelope amplitude is defined as a modulus of the
analytic signal:

Ai(t) = |Zi(t)| =
√

Xi, [f1, f2](t)2 + X̂i(t)2. (2)

3. Construct of a cumulative series. In the initial stage of the process, a cumulative series, designated as
Yi(k), is constructed using the envelope amplitude Ai(t) of length N :

Yi(k) =
k∑

t=1

[Ai(t) − Āi], (3)

where Āi = 1
N

∑N
t=1 Ai(t), k is the ordinal number of the element in the time series for which all previous

values of Ai(t) from 1 to k are summarised.
4. The data set is divided into discrete segments. The cumulative series is partitioned into Ns = N/s

segments of length s, with an overlap of 50%.
5. Removal the trend observed in each segment. A polynomial regression is performed at each segment

of length s. The resulting trend, Y s
i (k), is then subtracted from the cumulative series, thereby obtaining

“decorrelated” fluctuations:

F 2
i (s, υ) =

1
s

s∑
k=1

(Yi[(υ − 1)s + k] − Y s
i (k))2, (4)

where υ = 1, 2, . . . , Ns is the index of the segment.
6. RMS fluctuation. The root-mean-square (RMS) fluctuation is calculated for each and every segment:

Fi(s) =

√√√√ 1
Ns

Ns∑
υ=1

F 2
i (s, υ). (5)

7. Repetition for different scales. Steps 3–5 are repeated for varying for values of s, which correspond to
different scales.

8. The construction of the dependence and estimation of the scale factor. Plot the fluctuation function
Fi(s) for all segment sizes, s, on logarithmic axes. The DFA scale factor, α, is the slope of the trend line in
the selected range of s and can be estimated using linear fitting.

The detrended fluctuation analysis were performed using the Neurophysiological Biomarker Toolbox [41]. The
fluctuations were calculated in each frequency band, using h = 50% overlapping windows from 0.8 to 30 s, and
the DFA exponent was found by fitting from 2 to 15 s. For each subject, we averaged the DFA exponents over the
regions of interest.

2.5 Phase coherence

We used phase-locking value (PLV) to estimate phase coherence between the pair of EEG signals [42]. First, we
filtered the signal in the frequency ranges of interest using a FIR filter. Second, we segmented the 30-s recordings
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into the trials with the 50% overlap. The trials length depended on the frequency range of interest: 1250 ms (for
1–7 Hz), 500 ms (6–13 Hz), 312.5 (13–20 Hz) and 200 ms (20–30 Hz). We estimated PLV for each trial and averaged
them across all trials. Finally, PLVs were averaged over the pair of sensors belonging to the same region of interest
reflecting within-regional phase coherence. Similarly, we averaged PLVs across the channels pairs belonging to
different brain regions, obtaining between-regional coherence.

2.6 Statistical analysis

The exploratory analysis of the obtained DFA scale factor, within-regional PLV and between-regional PLV values
was conducted using repeated measures ANOVA, incorporating two within-subject factors: frequency range and
brain region.

The relationship between brain activity parameters and cognitive characteristics of the subjects was analysed
using linear regression and correlation analysis methods. The effect of the independent variables on the dependent
variable was analysed using linear regression. The dependent variable was IQ, while the independent variables were
the DFA scale factors, within-regional PLV and between-regional PLV calculated in all frequency bands and brain
regions of interest, resulting in a total of 16 values for each brain activity parameters. Given the restricted sample
size, it was not feasible to incorporate all 16 values into a single model. In lieu of this, two classes of models were
trained, each comprising four models and four variables. In the first class, distinct models were constructed for
each frequency range, with brain region included as a variable. In the second class, separate models were trained
for each region, with the frequency range included as a variable. Models were fitted separately for values of the
DFA scaling factor, within-regional PLV and between-regional PLV. A total of eight models were fitted for each
brain activity parameters, with the significance level adjusted to 0.00625 due to multiple comparisons.

Correlation analyses were conducted to ascertain any linear relationships between neurophysiological parameters
and cognitive performance. The relationship between the parameters was assessed using Pearson’s correlation
coefficient. The level of statistical significance was set at 0.05.

All calculations were conducted using the R software [43].

2.7 ML-based classifier

An ML-based approach was employed for the purpose of classifying subjects according to their respective intelli-
gence levels. For this purpose, the subjects were divided into two groups based on the median IQ levels (M = 119.5).
Those subjects whose IQ scores were below the median were categorised as lowIQ , while those whose IQ scores were
above the median were categorised as highIQ . The DFA scaling factor calculated on the EEG channels belonging
to the frontal brain region (14 features in total) were employed for the purpose of training the classifier.

A SVM classifier with the linear kernel was employed for the purpose of training. This method has been demon-
strated to be an effective instrument for of analysing of EEG data, including the classification of various cognitive
states [44–47]. The linear SVM operates by defining an optimal hyperplane that maximises the separation between
two classes in the feature space, thereby increasing the gap between the data of each class. This approach enhances
the model’s resilience to noise and augments its capacity for generalisation. The regularisation parameter, denoted
as R, is a hyperparameter that serves to adjust the balance between increasing the gap and minimising the clas-
sification error, thereby preventing overtraining. In order to optimise this parameter, the GridSearch method was
employed in order to maximise the F1-score [48].

The performance of the ML-based model was evaluated using k -fold cross-validation. The data from all subjects
within the same group (lowIQ or highIQ) were partitioned into k = 5 subsets. The model was trained on k − 1
subsets and evaluated on the remaining subset.

To evaluate the quality of the ML model, the following metrics were calculated based on the number of true
positives (TP), true negatives (TN), false positives (FP) and false negatives (FN): accuracy, recall, precision and
F1-score.

The Boruta method [49] was employed for the purpose of identifying the most significant features for classifica-
tion. This method is based on a comparison of the original features with their corresponding “shadow features”,
which are generated by randomly permuting the values of the original features. The features exhibiting minimal
discrepancy with their shadow counterparts are deemed inconsequential with respect to the predictive performance
of the model.

3 Results

Results of the statistical analysis. We tested how the DFA scale factor depends on frequency range and brain
region. A repeated measures ANOVA was conducted, with two within-subject factors: frequency range and brain
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Fig. 4 The values of the
DFA scale factor (A),
within-region PLV (B) and
between-region PLV (C)
obtained for different
regions and frequency
ranges. Data are shown as
group mean and 95%
confidence interval

region (Fig. 4). The ANOVA analysis revealed a significant main effect of frequency range (F (3, 63) = 7.889,
p < 0.001) and an interaction effect of frequency range and region (F (9, 189) = 2.807, p = 0.004). However,
the main effect of region was not statistically significant (F (3, 63) = 2.437, p = 0.073). These findings suggest
that the DFA scale factor exhibits variation across frequency ranges but remains consistent across brain regions.
Furthermore, the variation in DFA scale factor across different frequency ranges is contingent on the specific brain
region under consideration.

The post hoc analysis indicate that DFA scale factor in the beta2 range exceeds the DFA scale factor at the
delta + theta range (p = 0.005, Holm correction), alpha range (p < 0.001, Holm correction) and beta1 range
(p = 0.005, Holm correction).

The post hoc analysis of the interaction effect of frequency range and brain region indicate that in the frontal
region, the DFA scale factor in the beta2 range is higher than that in the alpha range (p = 0.007, Holm correction).
In the beta2 range, the DFA scale factor in the temporal region higher than that in the occipital region (p = 0.003,
Holm correction). In the temporal region, the DFA scale factor in the beta2 range is higher than that in the alpha
range (p < 0.001, Holm correction) and in the beta1 range (p = 0.02, Holm correction).

We tested how the within-region PLV depends on the frequency range and region. We used the repeated measure
ANOVA with two within-subject factors: frequency range and region. The ANOVA revealed a significant main
effect of the frequency range (F (3, 63) = 168.642, p < 0.001), region: (F (3, 63) = 107.099, p < 0.001), and an
interaction effect of the frequency range and region (F (9, 189) = 38.087, p < 0.001). These results mean that the
within-region PLV takes different values in different regions and frequency ranges. Moreover, the way how the
within-region PLV varies across different regions depends on the frequency range.

These effects are illustrated in Fig. 4B. The post hoc analysis of the main effect of the frequency range reveals
that within-region PLV in the beta2 range is lower than in the other ranges (all p < 0.001, Holm correction). In
the beta1 range, within-region PLV is higher than in the beta2 range (p < 0.001, Holm correction), but lower than
in the other two ranges (all p < 0.001, Holm correction). Similarly, in the alpha range, within-region PLV is higher
than in the beta1 and beta2 ranges (all p < 0.001, Holm correction), but lower than in the delta + theta range
(p < 0.001, Holm correction).

The post hoc analysis of the main effect of region reveals that within-region PLV in the occipital region is higher
than PLV in the other regions (all p < 0.001, Holm correction). In the temporal region, within-region PLV is higher
than in the frontal region (p = 0.018, Holm correction), and in the central region (p = 0.003, Holm correction).
Finally, in the frontal region, within-region PLV does not differ from that in the central region (p = 0.466, Holm
correction).

The post hoc analysis of the interaction effect of the frequency range and region reveals that in the beta2
range, frontal and temporal PLV do not differ (p = 1.0, Holm correction), and there is no difference between the
frontal and central PLV (p = 0.05, Holm correction). Central and temporal PLV also demonstrate similar values
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(p = 0.383, Holm correction). In the beta1 range, there is no difference between frontal and central PLV (p = 0.1,
Holm correction) as well as between frontal and temporal PLV (p = 0.383, Holm correction), and between central
and temporal PLV (p = 1.0, Holm correction). In the alpha range, within-region PLV differs between the frontal
and central regions (p = 0.022, Holm correction) as well as between frontal and temporal regions (p = 0.006, Holm
correction). There is also a difference between the central and temporal regions (p < 0.001, Holm correction).
Finally, in the low-frequency delta + theta range, within-region PLV does not change between the frontal and
central regions (p = 0.07, Holm correction) as well as between frontal and temporal regions (p = 0.112, Holm
correction). At the same time, there is a difference between the within-region PLV in central and temporal regions
(p < 0.001, Holm correction).

We tested how the between-region PLV depends on the frequency range and region. We used a repeated measures
ANOVA with two within-subject factors: frequency range and region. The ANOVA revealed a significant main
effect of the frequency range (F (3, 63) = 59.443, p < 0.001), region (F (3, 63) = 237.806, p < 0.001), and an
interaction effect of the frequency range and region (F (9, 189) = 22.569, p < 0.001). These results indicate that
the between-region PLV takes different values in different regions and frequency ranges. Additionally, the variation
of between-region PLV across different regions depends on the frequency range.

These effects are illustrated in Fig. 4C. The post hoc analysis of the main effect of the frequency range reveals
that between-region PLV does not differ between the theta+delta and alpha ranges (p = 0.36, Holm correction).
In the beta2 range, between-region PLV is significantly lower than in the beta1 range (p = 0.04, Holm correction).
In turn, beta1 PLV is lower than the alpha range PLV (p < 0.001, Holm correction).

The post hoc analysis of the main effect of region reveals that in the frontal area, between-region PLV takes the
lowest value compared to other regions (all p < 0.001, Holm correction). In the central region, between-region PLV
is higher than in the frontal region (p < 0.001, Holm correction) but lower than in the other regions (all p < 0.001,
Holm correction). In the occipital area, between-region PLV is lower than in the temporal region (p < 0.001, Holm
correction) but higher than in the other three regions (all p < 0.001, Holm correction).

The post hoc analysis of the interaction effect of the frequency range and region reveals in the beta2 range, the
between-region PLV in the central region exceeds PLV in the occipital region (p = 0.034, Holm correction) but does
not differ from the PLV in the temporal region (p = 0.874, Holm correction). Finally, PLV does not differ between
the temporal and occipital regions (p = 1.0, Holm correction). In the beta1 range, the between-region PLV in the
central region takes a similar value as in the occipital region (p = 0.056, Holm correction) but differs from the PLV
in the temporal region (p < 0.001, Holm correction). Similar to beta2, PLV does not differ between the temporal
and occipital regions (p = 0.534, Holm correction). In the alpha range, the between-region PLV in the central
region differs from the ones in occipital and temporal regions (p < 0.001, Holm correction). The between-region
PLV also differs between occipital and temporal regions (p < 0.001, Holm correction). In the low-frequency delta
+ theta range, the between-region PLV is similar in the central and occipital regions (p = 1.0, Holm correction).
At the same time, a significant difference is observed between the temporal and central regions (p < 0.001, Holm
correction) as well as between the temporal and occipital regions (p < 0.001, Holm correction).

Finally, we tested whether the DFA scaling factor correlates with the PLV using Pearson’s correlation. Since
DFA and PLV depend on the frequency range and region, we performed correlation analysis separately for each
combination of the frequency range and region. As a result, there was no correlation between DFA and PLVs for
any frequency range in any region.

Regression analysis. Statistical analysis has provided us with detailed information about the dependence of
various parameters of neurophysiological activity on frequency ranges and brain regions. We have shown that
neurophysiological activity parameters vary across frequency ranges and brain regions. The identified statistical
effects were further explored using regression models to understand in more detail their contribution to subjects
cognitive abilities.

A linear regression analysis was conducted to ascertain whether DFA scaling factors or PLV can be employed as
a predictor of IQ. Two classes of models were trained. In the first class, distinct models were developed for each
frequency range, with the inclusion of brain region as a variable. In the second class, separate models were trained
for each region, with the frequency range included as a variable.

The results of these models are presented in Tables 1 and 2, which include the R-squared (R2) and p values to
assess the degree of fit. In the case of models with p values below 0.00625 (adjusted), we have bolded the p-values
and R2 and included detailed information on the contribution of each variable, presenting the coefficient value (β)
and p value. Variables with p values above 0.00625 (adjusted) have been presented as ‘–’.

There is consistency of results between the models in the two groups. In both classes, only DFA was found to
be the significant predictor of IQ. When the brain region was considered as a model variable (Table 1), the results
demonstrated that DFA scaling factor in the alpha range was a significant predictor of IQ (R2 = 0.62, p = 0.002).
Further analysis revealed that only frontal DFA scaling factor was a significant predictor (β = 0.66, p = 0.002).
When the frequency range was considered as a model variable (Table 2), only frontal DFA scaling factor was found
to be a significant predictor of IQ (R2 = 0.551, p = 0.006). A detailed analysis revealed that only alpha range
DFA scaling factor made a significant contribution to the prediction model (β = 0.687, p = 0.006).
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Table 1 Summary of the regression models: IQ is outcome variable, separate models are trained for different frequency
ranges, regions serve as model variables

Frequency range Overall fit of the
regression model

Importance of the region

Frontal Central Occipital Temporal

DFA exponent delta + theta p = 0.524, R2 =
0.163

– – – –

alpha p = 0.002, R2 =
0.62

p = 0.002, β
= 0.66

– – –

beta1 p = 0.433, R2 =
0.191

– – – –

beta2 p = 0.982, R2 =
0.022

– – – –

PLV, within-region delta + theta p = 0.767, R2 =
0.097

– – – –

alpha p = 0.542, R2 =
0.158

– – – –

beta1 p = 0.709, R2 =
0.113

– – – –

beta2 p = 0.731, R2 =
0.107

– – – –

PLV, between-region delta + theta p = 0.692, R2 =
0.117

– – – –

alpha p = 0.372, R2 =
0.211

– – – –

beta1 p = 0.333, R2 =
0.225

– – – –

beta2 p = 0.401, R2 =
0.202

– – – –

Table displays uncorrected p values, while the significance level is set to 0.00625. In the case of models with p values below
significance level, the p value and R2 were bolded

Based on these results, we conclude that frontal DFA scaling factor in the alpha range is a reliable predictor of
IQ. Figure 5A illustrates the relationship between frontal alpha range DFA scaling factor and IQ. Each subject’s
values are displayed along with the regression line (solid line) and 95% confidence interval (light grey area around
the regression line). Furthermore, the Pearson correlation coefficient (r) between these variables is also presented.
Furthermore, in order to examine the relationship between IQ and educational success, a correlation was conducted
between IQ and average school grade (Fig. 5B). The results demonstrate a robust positive correlation between IQ
and average grade: r = 0.618, p = 0.002, 95%CI[0.265, 0.825].

Results of classification. Regression analysis revealed significant predictors of IQ level, in particular the DFA
scale factor in the alpha range on the frontal region of the brain. These results were used to construct a classification
model aimed at dividing subjects into high and low intelligence groups and building a reliable predictive model.

An SVM classifier was employed for the purpose of classifying subjects according to their respective intelligence
levels. The classifier was trained on DFA scaling factor values calculated in the alpha frequency range for 14 EEG
channels corresponding to the frontal brain region. The resulting classification metrics were as follows: Accuracy
= 0.66, Precision = 0.6, Recall = 1.0, and F1-score = 0.75. The results are illustrated by the receiver operating
characteristic (ROC curve) in Fig. 6. The figure shows the mean value for all folds, together with the standard
deviation.

In order to ascertain the most important features for classification, Borut’s method was employed. Figure 7
presents a box-plot diagram that ranks the features according to their importance (Panel A) and a topogram that
visualises the most significant features (Panel B).

Figure 7A illustrates the distribution of the z-score, which is calculated as the ratio of the loss of classification
accuracy due to random permutation of features to its standard deviation. The green box-plots illustrate the
features identified as important by the algorithm, indicated by consistently higher z-scores than those of the
shadow features. Red box-plots illustrate the features that were excluded on the basis of their lower z-scores in
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Table 2 Summary of the regression models: IQ is outcome variable, separate models are trained for different regions,
frequency regions serve as model variables

Region Overall fit of the
regression model

Importance of the frequency range

delta + theta alpha beta1 beta2

DFA exponent Frontal p = 0.006, R2 =
0.551

– p = 0.001, β =
0.687

– –

Central p = 0.17, R2 =
0.301

– – – –

Occipital p = 0.9, R2 =
0.058

– – – –

Temporal p = 0.061, R2 =
0.395

– – – –

PLV, within-region Frontal p = 0.462, R2 =
0.182

– – – –

Central p = 0.586, R2 =
0.146

– – - –

Occipital p = 0.765, R2 =
0.098

– – – –

Temporal p = 0.718, R2 =
0.11

– – – –

PLV, between-region Frontal p = 0.95, R2 =
0.039

– – – –

Central p = 0.734, R2 =
0.106

– – – –

Occipital p = 0.936, R2 =
0.045

– – – –

Temporal p = 0.919, R2 =
0.051

– – – –

Table displays uncorrected p values, while the significance level is set to 0.00625. In the case of models with p values below
significance level, the p value and R2 were bolded

Fig. 5 Correlation between
IQ and DFA (A) and
between IQ and average
grade (B). Data are shown
as individual values (dots),
regression line (solid), and
95%-confidence interval
(light grey area around the
regression line). Legend
displays uncorrected
p values, while the
significance level is set to
0.003125
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Fig. 6 Receiver operating
characteristic (ROC-curve)
for SVM classifier

Fig. 7 Feature significance
assessed with the Boruta
method: A all features
ranked by importance; B
visualisation of the most
important features on the
head surface

comparison to the shadow features. Blue box-plots are employed to indicate shadow features that were incorporated
into the model for comparison with the real features. Yellow box-plots show those features whose z-scores lie on
the border of significance.

Figure 7B illustrates a topogram projected on the head surface with the distribution of DFA scaling factor
values by EEG channels. The white circles indicate the EEG channels that are most important for classification
purposes.

4 Discussion

The findings of our study with a group of 8–10 year old schoolchildren indicated that IQ scores were a significant
predictor of their academic performance, as evidenced by their average grade in school (Fig. 5B). Furthermore,
our findings indicate that an index of long-range temporal correlations in the time series of brain neural activity,
particularly the DFA index in the frontal region in the alpha frequency range, can serve as an reliable predictor
of a child’s IQ (Fig. 5A). This is confirmed by the results of classification subjects with high and low intelligence
based on SVM (Fig. 6). Importantly, we also observed that measures of functional connectivity such as phase
synchronisation did not show a significant correlation with IQ (Tables 1 and 2) or DFA score.

Relationship to other studies. The application of DFA method to EEG analysis in our study yielded novel
insights into the neural dynamics underpinning cognitive processes. This method has previously been successfully
employed for the analysis of the complexity and dynamics of neural activity in the brain [25, 26]. This method has
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been widely applied in the field of medical diagnosis [27] and the study of neural dynamics in various neurological
diseases [50]. Additionally, the DFA method has been employed to investigate more complex cognitive brain func-
tions, including the correlation between activation changes in EEG and cognitive load [41, 51], and the correlation
between the DFA scale factor and academic performance in physics tasks [52].

In addition, other studies have shown that biomarkers of resting brain activity can be used to predict IQ [53].
A substantial body of research has been dedicated to investigating the potential applications of fMRI in this
context. For example, the recent study has demonstrated that fMRI biomarkers based on resting-state functional
connectomes can predict key measures of intellectual ability [54]. Similarly, another study employed resting-state
fMRI and identify a positive correlation between brain entropy and intelligence [55]. In relation to EEG biomarkers,
a number of studies have highlighted the capacity of distinct power- and coherence-based measures to predict IQ.
Similarly, as in our study, these other studies frequently highlight the significant impact of the frontal region on
such predictive outcomes [18]. More recent work has employed more sophisticated measures, such as a magnitude
of information flow between different sensors, an has reported an inverse relationship with IQ, particularly in the
alpha and beta frequency ranges [56]. Table 3 presents a comparison of the results obtained with the available
literature data.

Taken together, the results of the present study are supported by those of recent studies in several aspects.
Firstly, it has been consistently demonstrated that IQ as measured by questionnaires is an important predictor of
academic success and future academic achievement. Secondly, the utilisation the DFA methodology to quantify the
temporal characteristics of neurophysiological signals has yielded insightful data pertaining to cognitive processes,
including IQ, beyond what can be captured by traditional metrics such as phase synchronisation. In light of these
findings, we propose that the DFA scaling factor derived from non-invasive recording of brain electrical activity may
serve as a valuable biomarker for monitoring a child’s IQ in the context of the educational process. By assessing the
DFA scale factor, educators and researches can obtain supplementary data regarding a child’s cognitive abilities,
which can inform the implementation of personalised educational interventions and facilitate the development of
an effective learning pathway.

Table 3 Comparison of IQ prediction results with existing literature data

Study Intelligence
measurement

Method Neurophysiological
measures

Results

Current study Raven’s progressive
matrices (RPM)

Regression analysis;
support vector
machine (SVM)

DFA exponent (EEG) p = 0.002, R2 = 0.62;
accuracy = 66%

Tong X. et al.
[46]

Wechsler Intelligence
Scale for Children
Fifth Edition
(WISC-V)

Connectome-based
predictive modelling
(CPM)

Brain connectome
signatures (rsfMRI)

r = 0.5573, p =
0.001

Saxe G.N. et al.
[47]

Wechsler Abbreviated
Scale of Intelligence
(WASI)

Regression analysis Brain entropy (fMRI) Bilateral
anteriorfrontal
lobes—p = 0.002,

R2 = 0.011;
inferiortemporal

lobe—p < 0.001, R2

= 0.015; bilateral
cerebellum—p =

0.043, R2 = 0.005

Thatcher R.W.
et al. [48]

Wechsler Intelligence
Scale for Children
revised (WISC-R)

Discriminant analysis Absolute power,
relative power,
RP-ratios, amplitude
asymmetry,
coherence, absolute
phase (EEG)

Accuracy =
92.81–97.14%

Thatcher R.W.
et al. [49]

Wechsler Intelligence
Scale for Children
revised (WISC-R) and
Wechsler Adult
Intelligence Scale
Revised (WAIS-R)

Discriminant analysis Phase Slope Index
(EEG)

Accuracy = 94%
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The results of correlation analysis showed that there was no significant correlation between DFA and PLV.
These results suggest that measures of long-range temporal correlations of DFA, which reflect the complexity of
temporal dynamics of brain activity, are not directly related to measures of phase synchronisation between brain
regions. This may indicate the independence of the different aspects of neural activity reflected by DFA and PLV,
which requires further investigation to better understand their contribution to cognitive processes.

Practical relevance in personalised education. The findings of our study have significant practical implica-
tions for the implementation of personalised education systems. In recent years, there has been a growing focus on
the development of methods aimed at tailoring educational programmes to the individual characteristics of each
student. The advent of neurotechnologies and artificial intelligence has created new avenues for the personalisation
of the learning process and the development of more flexible educational pathways [57]. The findings of our study
demonstrate that frontal EEG indicators, such as a DFA scale factor, can serve as objective biomarkers of cognitive
abilities, thereby enabling the development of novel approaches to monitoring children’s cognitive development.

Individual differences in intelligence and cognitive ability are of paramount importance with regard to the
question of learning success. As demonstrated by the research of Mayes and colleagues, IQ and neurophysiological
assessments are significant predictors of academic achievement [58]. The results underscore the value of objective
measurement of brain activity in enhancing the prediction of educational achievement. The combination of existing
tests and questionnaires with biomarkers, such as DFA scale factor, will facilitate the development of more accurate
systems of assessing students abilities, thereby enhancing the effectiveness of personalised learning.

Furthermore, the regular monitoring of children’s cognitive state using neurophysiological methods, such as EEG,
can be beneficial for the early diagnosis of cognitive deviations and the implementation of corrective measures
within the learning process. For example, [59] describes a system for monitoring the educational process based
on the analysis of EEG data, which allows for the automatic adjustment of the learning process in accordance
with the cognitive state of students. Consequently, the incorporation of neural dynamics analysis techniques into
educational frameworks presents a promising avenue for the development of adaptive training programmes that
can be tailored in real-time based on empirical data.

Limitations. Despite the significance of the findings, our study is not without its shortcomings. First, the study
sample was relatively small and comprised children within a single age range (8–10 years old). This restricts
the applicability of the findings to other age groups and necessitates further investigation utilising more diverse
samples. It has been demonstrated that there are considerable variations in intellectual ability according to age,
as well as other factors such as the educational context and cultural ability [53]. It would be beneficial for future
studies to include a wider age range in order to gain a deeper understanding of how neurodynamic measures change
with age and how they may be related to different stages of cognitive development.

Secondly, the present study was conducted under resting state, which precludes an assessment of the dynamics of
neural activity during cognitive task. It has been demonstrated that the cognitive load and performance of complex
tasks can have a significant impact on EEG measures, such as coherence and phase delay [18]. Consequently, on
order to gain a more comprehensive understanding of the relationship between intelligence and neural dynamics,
it is essential to incorporate tasks that demand high levels of cognitive activity, such as working memory tasks,
into the experimental design.

In addition, while our study demonstrates a significant association between the DFA scaling factor in the alpha
band of the frontal cortex and IQ obtained from RPM tasks, it is important to acknowledge the limitations of
these findings. RPM is a well-established test of fluid intelligence, specifically assessing abstract reasoning and
problem-solving skills [32]. Consequently, the observed relationship between DFA and IQ obtained from RPM
tasks should not be interpreted as evidence of a generalizable link between DFA metrics and overall intelligence
or learning success.

Finally, we used only one method of EEG analysis, DFA. Although this method has been demonstrated to be
an effective approach for examining long-range temporal correlations, alternative analytical techniques, such as
coherence or spectral power, can also valuable insights into the neural dynamics of the brain. In particular, studies
have demonstrated that EEG coherence can serve as a significant predictor of cognitive ability [56]. It would
be beneficial in the future to consider utilising a combination of analytic techniques for a more comprehensive
evaluation of brain activity.

5 Conclusion

Our results indicate that DFA scaling factor in the alpha band of the frontal cortex is associated with IQ test
performance, suggesting its potential as a neurophysiological marker. The DFA scaling factor in the alpha band of
the frontal cortex demonstrated the most pronounced association with IQ, which is consistent with previous studies
that have emphasised the importance of frontal activity and alpha rhythms in cognitive processes. These findings
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have significant implications for our understanding of the brain mechanisms associated with cognitive abilities and
highlight the necessity for further investigation into the neurodynamic processes that underpin intelligence.

The combination of neural dynamics analysis techniques, such as DFA, with traditional psychological tests has
the potential to facilitate a more personalised approach to education. The utilisation of objective neurophysiological
biomarkers to monitor the cognitive state of children presents a potential avenue for the early diagnosis of possible
developmental deviations and the adaptation of the educational process to the individual characteristics of each
student. The introduction of such methods will facilitate a more accurate determination of the needs of students
by schools and educators, as well as development of personalised curricula based on data on cognitive activity and
intellectual abilities.

Acknowledgements This work is supported from the Russian Science Foundation (project 24-71-00106).

Data availability The dataset presented in this study can be obtained on request.

References

1. P. Checa, P. Fernández-Berrocal, The role of intelligence quotient and emotional intelligence in cognitive control pro-
cesses. Front. Psychol. 6, 1853 (2015)

2. T. Klingberg, Childhood cognitive development as a skill. Trends Cogn. Sci. 18(11), 573–579 (2014)
3. D. Walker, J.J. Carta, C.R. Greenwood, J.F. Buzhardt, The use of individual growth and developmental indicators for

progress monitoring and intervention decision making in early education. Exceptionality 16(1), 33–47 (2008)
4. M.H. Murtza, S.A. Gill, H.D. Aslam, A. Noor, Intelligence quotient, job satisfaction, and job performance: the moder-

ating role of personality type. J. Public Aff. 21(3), 2318 (2021)
5. D.J. Reschly, J.E. Ysseldyke, Paradigm shift: The past is not the future, in Best practices in school psychology IV , ed.

by A. Thomas, J. Grimes (National Association of School Psychologists, 2002), pp. 3–20
6. L.S. Fuchs, D. Fuchs, What is Scientifically-based Research on Progress Monitoring? (National Center on Student

Progress Monitoring, New York, 2001)
7. Z. Chen, R.S. Siegler, Intellectual development in childhood, in Handbook of intelligence, ed. by R. J. Sternberg (Cam-

bridge University Press, 2000), pp. 92–116
8. J.H. Kranzler, R.G. Floyd, Assessing Intelligence in Children and Adolescents: A Practical Guide for Evidence-based

Assessment (Rowman & Littlefield, Lanham, 2020)
9. I.A. Clark, E.A. Maguire, Do questionnaires reflect their purported cognitive functions? Cognition 195, 104114 (2020)

10. N. Korenevskiy, S. Rodionova, N. Korzhuk, V. Aksenov, An expert system for assessment of the state of cognitive
functions using a fuzzy hybrid knowledge base. Biomed. Eng. 55, 263–268 (2021)

11. M.G. Falleti, P. Maruff, A. Collie, D.G. Darby, Practice effects associated with the repeated assessment of cognitive func-
tion using the cogstate battery at 10-minute, one week and one month test-retest intervals. J. Clin. Exp. Neuropsychol.
28(7), 1095–1112 (2006)

12. M.D. Foreman, K. Fletcher, L.C. Mion, L. Simon, N. Faculty, Assessing cognitive function: the complexities of assessment
of an individual’s cognitive status are important in making an accurate and comprehensive evaluation. Geriatr. Nurs.
17(5), 228–232 (1996)

13. C.M. Bird, K. Papadopoulou, P. Ricciardelli, M.N. Rossor, L. Cipolotti, Monitoring cognitive changes: psychometric
properties of six cognitive tests. Br. J. Clin. Psychol. 43(2), 197–210 (2004)

14. K. Alcock, P. Holding, V. Mung’ala-Odera, C. Newton, Constructing tests of cognitive abilities for schooled and
unschooled children. J. Cross Cult. Psychol. 39(5), 529–551 (2008)

15. A. Revathi, R. Kaladevi, K. Ramana, R.H. Jhaveri, M. Rudra Kumar, M. Sankara Prasanna Kumar, Early detection of
cognitive decline using machine learning algorithm and cognitive ability test. Secur. Commun. Netw. 2022(1), 4190023
(2022)

16. V.V. Grubov, M.V. Khramova, S. Goman, A.A. Badarin, S.A. Kurkin, D.A. Andrikov, E. Pitsik, V. Antipov, E.
Petushok, N. Brusinskii et al., Open-loop neuroadaptive system for enhancing student’s cognitive abilities in learning.
IEEE Access 12, 49034–49049 (2024)
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