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ABSTRACT

In the present paper, we introduce an extended machine-learning-based approach to detect inter-areal functional
connectivity based on an artificial neural network (ANN). Using the concept of generalized synchronization, we
show that the proposed approach is relevant to infer functional dependencies between remote brain areas of
interest from multivariate EEG recordings. We verify the ANN-based method to capture the reconfiguration
of functional connectivity during motor execution. The proposed model showed good ability to approximate
functional relations between the electrical activity of parietal and frontal areas and motor cortex at different
stages of motor execution, providing an adequate pattern of functional connectivity network.
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1. INTRODUCTION

A brain neural system is a complex network that can be represented as a large-scale graph with brain ar-
eas as nodes and functional dependencies between them as links.1 Traditionally, brain activity is assessed via
neuroimaging techniques such as fMRI or magneto-/electroencephalography (M/EEG) data and functional con-
nectivity inference is based on the concept of synchronization of brain rhythms between different areas of the
brain.2–8

In the present paper, we propose method for estimation of functional dependencies between the states of
different brain areas detecting the establishment of generalized synchronization (GS). GS refers to the presence
of functional relationship between two coupled system, i.e., drive system x(t) and response system y(t):9,10

y(t) = F (x(t)). (1)

The interaction between drive and response systems may be very complicated, and various of methods were
introduced to detect GS, such as the auxiliary system approach for the systems with unidirectional coupling,11–13

mutual false nearest neighbours,9,14 Lyapunov exponent,10,15 recurrence plots,16,17 etc. However, the number
of studies of functional relationships detection between remote brain areas is rather limited. Detection of GS in
neurophysiological data is indeed a challenging task due to it’s high noise level and nonstationarity.

In present paper, we apply the concept of GS to detect functional relationships associated with motor-related
activity between remote brain areas. In our previous study, we introduced model-free approach based on artificial
neural network to detect GS on ECoG data set of WAG/Rij rats with genetic predisposition to absence epilepsy.18

Recently, the machine learning approach attracted the researchers’ attention for detection of GS in coupled
chaotic system. In this context, the most promising results were achieved via echo state networks (ESN). ESN
is an implementation of recurrent neural network with randomly generated and very sparsely connected hidden
layer.19 ESN demonstrated good ability to predict chaotic dynamics20 and evolution of chaotic systems21–23

among others.
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Figure 1. A: An example of raw EEG data filtered in the range from 4 to 100 Hz. Here, x(t) (drive) and y(t) (response)
represents the multivariate subsets of EEG data recorded from different regions of scalp. B The 3D trajectory of 3-
dimensional subsets x(t) and y(t) after normalization and filtration of initial raw data. C A simplified scheme of feed-
forward multilayer perceptron with one hidden layer (left) and the result of functional dependence estimation, where y(t)
is a response state and y′(t) is a state predicted by FF-MLP model based on the drive state.

We propose an approach based on feed-forward multilayer perceptron (FF-MLP), which is less computation-
ally costly and is able to train from short EEG time-series.24,25 In our previous work,18 FF-MLP demonstrated
good ability to approximate functional dependence between coupled chaotic model systems based on Rössler
oscillators, showing the agreement with the well-known concepts. Considering neurophysiological data, proposed
method successfully predicted the formation of functional relations between cortical layers and thalamic nuclei
after the onset of an epileptic discharge in ECoG data of WAG/Rij rats. Here, we apply FNN-MLP to assess
functional dependence in motor-related EEG data recorded from remote brain areas. We show that our method
is able to predict functional connectivity of brain network on different stages of motor execution.
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2. METHODS

2.1 Experimental dataset

Motor-related EEG data was recorded during experimental sessions with 10 healthy volunteers (26.1± 5.2 years,
3 females). During the experimental session, participants were seated in a comfortable chair with their hands
lying on the table in front of them to exclude any non-task-related muscle contractions (see in detail in Ref.26). In
the beginning of the experimental session, the 5 min of the eyes-open resting state activity was recorded. Then,
all participants were performing motor tasks according to the instruction: clench hand into a fist on the first
audio command (a short signal for the left hand and a long signal for the right, 350 and 750 ms, respectively),
and relax it after the second audio command. Each participant performed a total of 30 movements with each
hand. Each motor task lasted 4-5 s, and after the movement was completed, the 6-8 seconds long pause was
given before the next motor task.

EEG data were recorded via EEG amplifier Encephalan-EEGR-19/26 (Medicom MTD, Russia) with a sam-
pling rate 250 Hz. We used 31 Ag/AgCl electrodes according to the “10-10” international system.27 Acquired
EEG signals were filtered using the 50 Hz Notch filter to avoid the power-line interference. Additionally, we
applied the 5th-order Butterworth filter in the range 4–100 Hz to remove low-frequency artifacts.

For the FF-MLP model we sliced each EEG dataset into epochs, each epoch containing 3 seconds of recording
corresponding to the prestimulus period (1 s before audio command), premovement period (1 s after audio
command) and 1 s of motor-related activity (see Fig. 1).

2.2 Feed-forward neural network

2.2.1 Training and validation datasets

Fig. 1AB show the process used to generate training and validation data for FF-MLP model from raw motor-
related EEG data. First, we selected 5 subgroups of EEG sensors corresponding to the brain areas of interest:
parietal area (P , sensors P4, Pz, P3), frontal area (F , sensors F4, Fz, F3), left hemisphere of motor cortex (MCl,
sensors Fc3, C3, Cp3), right hemisphere of motor cortex (MCr, sensors Fc4, C4, Cp4) and midline of motor
cortex (MCz, sensors Fcz, Cz, Cpz). Thus, each pair of the subsets can be represented as follows:

x(t) = (x1(t), x2(t), x3(t))T ,

y(t) = (y1(t), y2(t), y3(t))T .
(2)

According to the proposed approach, we use our model to predict the state of brain area y(t) using the
state of the other brain area x(t). Each subset represents can be treated as a 3D trajectory, with corresponding
time-series representing the state variables (see Fig. 1B). Before proceeding with the FF-MLP training, the data
were filtered in the frequency bands of interest, normalized in the range [0,1], shuffled and split in half on training
and validation sets.

2.2.2 MLP model configuration

The multilayer perceptron (MLP) is a class of feed-forward artificial neural networks that is well-known as
universal approximator, being able to establish functional relationships, if any, between the input and output
data.28 Therefore, FF-MLP model is of particular interest in the current task, since the functional connection
between remote brain areas implies the presence of functional dependence between them. Considering our
multivariate sets x(t) and y(t), our model establishes the relation between them and makes a prediction y′(t) of
y(t) based on x(t). The successful approximation indicates the presence of functional connection between brain
areas corresponding to the x(t) and y(t) trajectories. An example of FF-MLP with one hidden layer is shown in
Fig. 1C (left).

Our model consisted of 3 input and 3 output linear units corresponding to the dimensionality of the multi-
variate datasets, and two hidden layers with 10 softmax units each. The training process was performed using the
Adam optimizer (learning rate = 0.001) for 1000 epochs. The degree of functional dependence between response
and predicted sets we estimated via the R2-score measure:
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R2 = 1 −
∑D

d=1

∑N
i=1(yd(ti) − y′d(ti))

2∑D
d=1

∑N
i=1(yd(ti) − ȳd)2

(3)

with the number of dimensions D = 3, and y′d(t), yd(t), ȳd(t) are the dth components of predicted and original
time series and the mean value of the latter, respectively.

3. RESULTS
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Figure 2. Functional connectivity of human brain during three stages of motor execution, obtained via FF-MLP for A θ
and B α EEG rhythms. The links between brain areas are color-coded with the coupling strength based on the R2 score.

Fig 1C shows an example of the response trajectory prediction via proposed FF-MLP model. We used an
unfiltered single trial motor-related EEG. One can see that the model demonstrated a good ability to predict
response trajectory based on the drive one, with R2 = 0.74, which indicates an established functional dependence
between x(t) and y(t).

We proceed with the analysis of functional connectivity between the remote brain areas in θ- (4-8 Hz) and α-
(8-14 Hz) EEG rhythms, which are known to be associated with the processes of motor initiation and execution
in healthy participants. The results are shown in Fig. 2.

The highest degree of functional dependence was obtained in the θ-band (see Fig.2A). During the prestimulus
period, the strongest connections were established between motor and parietal cortices (MCl − P , MCz − P ,
MCr − P ), and between motor and frontal cortices (MCl − F ). Shortly after the audio stimulus, the network
structure changes by terminating the link with midline motor area MCz. Increased coupling in the motor cortex
may be associated with working memory activated during the motor initiation.26,29 The motor execution is
associates with increased coupling between F and (MCz,MCr) and P and (MCr,MCl).

Considering the α-band connectivity (see Fig. 2B), most of the connections are concentrated in the motor
cortex, which agrees with the known studies of the brain functional connectivity during motor execution assessed
with more conventional methods.30 One can notice, that most functional links are concentrated in MCl area,
which reflects contralaterality of motor activation in healthy participants. Besides, activation of parietal group of
sensors during motor execution has been previously reported in31 and linked to somatosensory-motor association.
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4. CONCLUSION

We proposed an ANN-based approach to infere functional dependencies between remote brain areas during motor
execution. Using the concept of generalized synchronization, we used multivariate subsets of EEG data as drive
and response time series to train the FF-MLP model and obtain predictions of response set based on the state of
drive set. Proposed model showed good ability to approximate functional relations between remote brain areas,
with sufficient value of R2 score in slow θ-band. Despite moderate level of R2 score in α-band, FF-MLP model
was able to provide an adequate estimation of functional connectivity during the motor execution.
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