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Abstract—Prospects of using parallel computing technology (PaCT) methods for the stream processing and
online analysis of multichannel EEG data are considered. It is shown that the application of PaCT to calcu-
lation and evaluation of spectral characteristics of EEG signals makes online determination of changes in the
energy of the main rhythms of neural activity in various parts of the cerebral cortex possible. The possibility
of implementing the PaCT algorithm with CUDA C library and its use in a modern brain–computer interface
(BCI) for cognitive-activity monitoring in the course of visual perception.
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In recent years, studying neural networks in the
human brain has been of considerable interest, which
can be seen in the rapid growth in the number of sci-
entific publications in this field [1–5]. A significant
number are devoted to the description of results
obtained at the interface between neuroscience and
other sciences (physics, mathematics, psychology,
engineering, etc.).

Effective analysis of processes in the brain requires
developing both the new methods of analysis and the
new software and hardware facilities for their imple-
mentation. In this context, a promising approach is
provided by parallel computing technology (PaCT)
intended for online analysis of a large body of data.
This is necessary, in particular, for developing brain–
computer interfaces (BCIs) [6]. At present, BCIs are
extensively created and applied, e.g., for controlling
simple movements [7], managing exoskeleton robots
[8], detecting absence-epilepsy seizures [9, 10], etc.
Further BCI development must employ advanced
methods for the interpretation of electroencephalog-
raphy (EEG) records based on analysis of big input
data.

In this Letter, we propose a new algorithm for the
stream processing of multichannel EEG records,
which employs the PaCT principle. The efficiency of
applying this algorithm to BCI based on the Enceph-
alan (Taganrog, Russia) EEG measuring unit and data
processing with the aid of CUDA C library is shown.

The main sources of information on human-brain
functioning are related to experimental methods
involving the measurement and analysis of neural-

activity signals. One of the most widely used tech-
niques in both pathological and normal states is EEG
recording of brain electrical activity [11, 12]. EEG
records are characterized by a complicated time–fre-
quency map structure with a set of frequency ranges
and oscillatory patterns, significant nonstationarity,
high noise level, and intermittent behavior [13, 14].
The dynamics of the EEG signal in characteristic
ranges and the formation of specific oscillatory pat-
terns are known to reflect to a significant degree the
functional state of both the brain and the whole organ-
ism.

Analysis of complex EEG signals and detection of
oscillatory patterns are traditional tasks in radio phys-
ics and nonlinear dynamics, where a number of effec-
tive methods have been developed that are already
finding application in EEG analysis [15]. One of these
methods is based on the continuous wavelet transform
(CWT) [16], which is frequently used for recognizing
characteristic rhythms by constructing “skeleton”
plots [17]. Skeleton plots represent the lines of local
maxima in a wavelet spectrum and can be used for
detecting and tracing dominant components in the
EEG signal.

Although the CWT allows detailed time–fre-
quency analysis of EEG patterns to be performed,
application of this method requires considerable com-
putational facilities. Thus, special approaches have to
be developed in the case of CWT application to online
interpretation of multichannel EEG records in BCIs.
One possible solution of this task is based in the use of
PaCT.
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Fig. 1. Scheme of the proposed brain–computer interface
showing the operator head with electrodes from which
EEG signals are fed into a recorder and transmitted to a
computer, where bistable images are presented and the
wavelet energy is calculated. The feedback chain is imple-
mented using acoustic signals.

Sound alarm

Feedback

Stimulus

demonstration

EEG wavelet analysis

Data transmissionEEG recording
In the present work, the method of EEG analysis
based on PaCT algorithms has been verified in a BCI
intended for estimating and monitoring the level of
attention concentration associated with visual percep-
tion [18]. An original BCI employed signals from five
EEG channels in the occipital lobe as input data. It is
expected that the use of PaCT will allow the volume of
processed data to be increased up to nineteen EEG
channels.

Figure 1 shows a diagram illustrating the BCI algo-
rithm. The BCI functioning proceeds according to the
following scheme: (i) online recording of EEG signals,
(ii) wavelet analysis of EEG data using the PaCT algo-
rithm with the CUDA C library, (iii) verification of
skeleton-based criteria for determining the level of
attention concentration, and (iv) feedback response
based on the current level of attention concentration.
TEC
Multichannel EEG records were obtained using an
Encephalan EEG measuring unit. The EEG signals
were taken from 19 EEG electrodes according to a 10–
20 scheme at a time resolution of 250 Hz. A software
package developed by the Medical MTD company
and that we modified allowed EEG data to be
obtained online.

The EEG signals were processed by the CWT
method so as to calculate the wavelet energy spectrum
for each of the nineteen EEG channels in the 4–30 Hz
frequency range. The online processing of EEG data
was ensured by PaCT on the CUDA platform. Figure 2
shows a scheme of this parallel computing process
schematically. As can be seen from Fig. 2, the PaCT
algorithm is implemented in several stages. At the first
stage, parallelism between EEG channels is intro-
duced and the BCI receives data in the form of time
series for 19 channels that are fed into individual
CUDA computing moduli. In each module, data are
transferred from a central processing unit (CPU) to a
graphics processing unit (GPU), which corresponds
to the second stage of parallelism. The separation into
blocks allows the entire frequency range to be split into
M parts and perform the CWT procedure in each
block over the entire length of time series. At the third
stage, each block is separated into L threads corre-
sponding to one moment of the time series. After the
termination of calculations in all threads, data are
transferred back to the CPU for further processing.

Then, skeleton plots are constructed and criteria of
the neural response to visual-stimulus presentation are
checked. The skeleton plots have been constructed for
N = 19 EEG channels in two phases: (I) before and
(II) during the perception of a bistable image. Every
presentation of a stimulus was separately analyzed in
frequency intervals of the alpha (Δfα = 8–12 Hz) and
beta (Δfβ = 20–30 Hz) rhythms. Five skeleton plots
were constructed for every stimulus presentation and
the corresponding spectral characteristics AI,II and
BI,II were introduced to reflect the intensity of alpha
and beta rhythms before (I) and during (II) perception
as calculated by the following formula:

(1)

where  are the values of maximum spectral com-
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Fig. 2. Scheme of the PaCT algorithm for CWT calcula-
tion on the CUDA platform for one EEG channel, one
block, and one thread. Calculations for other chan-
nel/block/thread units are performed by analogous
schemes, after which the results from all threads are col-
lected for further processing.

...

......

...

......

...

... ......

EEG data

EEG channel 1

Division into blocks

Division into threads

Block 1

Threads 1

Computation

Data transmission from GPU to CPU

Further processing

Threads 2 Threads L

Block 2 Block M

EEG data transmission

from CPU to GPU

EEG channel 2 EEG channel N
values of AI,II and BI,II are averaged for six stimulus

presentations to yield 〈AI,II〉 and 〈BI,II〉 values, respec-

tively, and the control characteristic G(t) was calcu-
lated as

(2)

At the fourth stage of the BCI algorithm, the cur-
rent value of G(t) is compared to a preset threshold
and, if this level is exceeded, the BCI generates an
acoustic signal that evidences reduction in the opera-
tor attention concentration, thus acting as feedback.

The verification of BCI functioning based on the
proposed PaCT algorithm demonstrated high effi-
ciency of processing of the neurophysiological data.
The comparison of performance of the original algo-
rithm and that implemented on a GPC using CUDA
revealed a 60-fold increase in the speed of EEG data
processing. This result opens up the possibility of ana-
lyzing cognitive processes localized in various lobes of
cerebral cortex, which requires detailed spatial
arrangement of EEG electrodes.
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