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Abstract: Sensor-level human brain activity is studied during real and imaginary motor execution
using functional near-infrared spectroscopy (fNIRS). Blood oxygenation and deoxygenation spatial
dynamics exhibit pronounced hemispheric lateralization when performing motor tasks with the left
and right hands. This fact allowed us to reveal biomarkers of hemodynamical response of the motor
cortex on the motor execution, and use them for designing a sensing method for classification of the
type of movement. The recognition accuracy of real movements is close to 100%, while the classification
accuracy of imaginary movements is lower but quite high (at the level of 90%). The advantage of
the proposed method is its ability to classify real and imaginary movements with sufficiently high
efficiency without the need for recalculating parameters. The proposed system can serve as a sensor
of motor activity to be used for neurorehabilitation after severe brain injuries, including traumas
and strokes.

Keywords: brain activity; functional near-infrared spectroscopy (fNIRS); real and imaginary motor
execution; sensor level

1. Introduction

A study of neurophysiological brain activity attracts significant interest of researchers from various
fields of science due to its interdisciplinary nature. The considerable progress in the development of
experimental approaches for neuroimaging and mathematical methods for big data analysis provides
great opportunities for vast and detailed studies of specific phenomena in the brain neural network
and the creation of sensor systems for monitoring brain states. Recent progress in this field has been
achieved at the junction of mathematics, physics, engineering and neuroscience [1]. This is confirmed
by an increasing number of papers related to brain research and published in multidisciplinary journals
(see, e.g., [2–5]).

From the viewpoint of nonlinear dynamics, brain is a very complex dynamical system, containing
around 86 billion neurons [6]. The neurons are connected by synapses, thus forming a complex
network with nodes and links represented respectively by neurons and synapses. Specific features
of time-spatial activity of the neural network in the brain cortex and cooperative dynamics of
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different brain areas (e.g., event-related synchronization/desynchronization) on a sensor level provide
important information about the current state of the nervous system and cognitive brain ability [7–10].
Particular brain states are associated with motor brain activity during either real or imaginary
movement.

Revealing specific features of spatial brain cortex activity related to real motions and motor
imagery of different limbs can be essential not only for basic research in neuroscience, but also for
applications in medicine to improve the quality of life of post-traumatic and post-stroke patients using
brain-computer interfaces (BCI) for rehabilitation [11–13] or to control prostheses and exoskeletons [14].
One of the important BCI functions is online detection of specific features of electromagnetic
brain activity using electroencephalography (EEG) [15] or magnetoencephalography (MEG) [16],
and transformation of certain patterns into control commands to perform specific actions in the
environment without the need of “classical” methods of human–machine interaction [17].

Apart from EEG and MEG, other methods are also used to acquire information about brain states.
In particular, functional near-infrared spectroscopy (fNIRS) [18,19] is a powerful tool of noninvasive
optical imaging successfully used in BCI for registration of brain activity and control command
formation [20–22]. Control commands for this kind of BCI should not be affected by any muscular
activity [23]. Therefore, a study of brain states related to motor imagery is very important for designing
such BCI [16,24]. Motor imagery is a mental process by which a person rehearses or simulates a given
action with no real motor activity. Some researchers treat motor imagery as a conscious application of
unconscious preparation for real motor activity [25]. A number of studies have highlighted common
features for real and imaginary motor activity [26–28]. One of the common features, important for the
BCI development, is that the cortical layout in the primary motor cortex M1 is quite similar between
motor execution and motor imagery.

The most popular technique for studying brain activity during motor executions is EEG,
that implies the location of special sensors on the scalp (or directly into the brain) and recording
EEG signals as electric currents generated by a group of neurons [29]. The EEG signal or electrical
response of the neural network is characterized by a complex time-frequency structure containing
specific frequency ranges, oscillatory patterns, stochastic components, artifacts, etc. [30]. It is well
known that there is a strong correlation between EEG rhythmic activity and functional states of the
organism [31–33] that can be used for revealing specific features related to real and imagery motor
activity [34–36]. The problem of detection and classification of different types of motor execution
requires the application of various methods for time-frequency and spatio-temporal analyses [37],
including artificial intelligence methods [4], recurrence measures of signal complexity [38], as well as
event-related synchronization (ERS) and event-related desynchronization (ERD) [39].

In this work, we use fNIRS, an efficient noninvasive technique for brain activity estimation [40],
that employs near-infrared light to detect changes in oxygenated (HbO) and deoxygenated (HbR)
hemoglobin levels due to hemodynamic brain activity and the rapid delivery of oxygenated blood to
active cortical areas through neurovascular coupling [41]. A high efficiency of fNIRS is achieved due
to the use of laser lights with two different wavelengths which penetrate most tissues in the head, but
are highly absorbed by oxyhemoglobin (HbO) and deoxyhemoglobin (HbR). According to changes in
the absorption of these two wavelengths, corresponding changes in HbO and HbR concentrations can
be calculated and hence the oxygenation of brain tissues can be assessed.

It should be noted that fNIRS has a common physiological basis with functional magnetic
resonance imaging (fMRI), so that their signals are correlated [42]. Meanwhile, fNIRS has many
advantages over fMRI, namely, resistance to motor artifacts, high mobility due to significantly smaller
sizes, and higher temporal resolution for the determination of oxyhemoglobin and deoxyhemoglobin.
At the same time, fNIRS has some drawbacks, in particular, fNIRS has lower spatial resolution than
fMRI. Despite relatively low temporal resolution and the existence of time delay in the hemodynamic
response compared to EEG signals, fNIRS is a powerful tool of functional neuroimaging and can
compete with other imaging techniques such as fMRI and EEG. The fNIRS imaging is superior to other
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techniques in studying neural activity in the primary motor cortex M1 because this area lies on the
outer cortices which is within the blood oxygenation level deprivation (BOLD) scanning range for
fNIRS [43]. A significant advantage of fNIRS over MEG is its portability and more easy mounting
of sensors on the patient’s head. Moreover, the fNIRS equipment is cheaper as compared to fMRI
and MEG. Thus, fNIRS holds a special place among modern methods of neuroimaging due to a good
combination of temporal and spatial resolutions, overall mobility and simplicity of use.

In this paper, we analyse fNIRS data acquired during human real and imaginary motor activity
associated with motor cortex hemodynamics. In particular, we extract specific features of the fNIRS
signals related to different types of motor activity, which can be used in BCIs. We also propose an
universal method to classify fNIRS trials obtained during motor imagery and develop a sensor of
motor activity to be used for neurorehabilitation systems after various brain injuries, including stroke.

2. Materials and Methods

2.1. Participants

Twelve healthy volunteers (age: 22–38 years, gender: 7 men and 5 women), right-handed,
amateur practitioners of physical exercises, non-smokers participated in the experiment. None of the
subjects had diagnosed diseases of the musculoskeletal system and neurological diseases and did not
take medications. Every participant was asked to maintain a healthy lifestyle with 8-hours night rest
for 48 h before starting the experiment.

Each participant provided informed written consent before participating in the experiment.
The experimental procedure was performed in accordance with the Helsinki’s Declaration and
approved by the local Ethics Committee of the Innopolis University.

2.2. Experimental Equipment

The experiment was designed to record a hemodynamic neuronal response in the motor cortex
using fNIRS which records fast changes in the brain activity. The fNIRS signals were acquired by
the NIRScout device manufactured by the NIRx Company (Germany). The NIRScout system has a
7.8125-Hz resolution and contains 8 sources and 8 detectors placed on the subject’s scalp in the primary
motor cortex area (M1) as shown in Figure 1a. Each pair “source–detector” was placed close enough to
each other (about 3 cm) to form a fNIRS channel. In our experiments we used 20 fNIRS channels and 9
EEG electrodes located according to the international scheme “10–10” scheme [44], as illustrated in
Figure 1b.
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Figure 1. (a) Location of fNIRS sources (marked with red) and detectors (marked with blue) on the
subject’s head in the area of primary motor cortex (shaded area). (b) Location of 20 fNIRS channels
(grey circles with channel numbers) across motor cortex (shaded area) and 9 EEG electrodes (CP4,
CPz, CP3, C4, Cz, C3, FC4, FCz, FC3) according to “10–10” scheme (black circles with channel names).
(c) Schematic illustration of traveling path of near-infrared light from source (S) to neighbour detectors
(D1 and D2) through brain cortex matter.
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All experiments were carried out in the Neuroscience and Cognitive Technology Lab of the
Innopolis University.

2.3. Experimental Procedure

The experiment was performed as follows. The subjects were sitting on a comfortable chair while
performing motor actions or motor imaginary of left and right hands according to the corresponding
text command on a computer monitor placed in front of the subject’s eyes at a distance of 70–80 cm.

The experimental design is schematically shown in Figure 2. Each experiment began and ended
with a 3-min recording of background brain activity, during which the subject were instructed to
relax and make no hand movements. The experiment included two sessions (Figure 2a). In the first
session, the subject was asked to perform real movements with left or right hand according to the
corresponding command on the screen. Then, after a short break, in the second session the subject
was asked to imagine the same type of movement according to the corresponding command on the
screen. Each fNIRS trial during every session consisted of the text command presentation indicating
the type of motor activity (the subject was given 15 s to perform required movement) and the rest
interval (15 s from the end of motor activity till the next command). There were 10 trials for each type
of motor activity.
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Figure 2. Schematic representation of (a) experimental design and (b) task execution during a long
fNIRS trial.

Hand movement consisted of repeated bending/unbending of fingers to the center of the palm
(similar to clenching of imaginary ball), as illustrated in (Figure 2b). The repeated movements were
performed at the pace comfortable for the subject.

2.4. Data Acquisition and Pre-Processing

In the fNIRS experiments, we used a laser light with two wavelengths, λ1 = 785 nm and
λ2 = 850 nm, that can pass through skin, bone and water, but are highly absorbed by oxyhemoglobin
and deoxyhemoglobin, respectively [45]. In the developed configuration for the fNIRS recording,
the light sources and detectors were placed on the scalp and dual-wavelength light was transmitted
through skin, skull, and top layer of the cerebral cortex.

As seen from Figure 1c, near-infrared light travels from the source to the detector through a
specific path. First, it goes from the source to the tissue and at the depth of approximately 3 cm is
reflected towards the detector. The path shape limits the distance between the source and detector to
2–3 cm and allows one to detect changes in the reflected near-infrared light.

In order to obtain information about changes in oxygenation of the tissue, we analyzed raw
fNIRS data using special software. Since oxyhemoglobin and deoxyhemoglobin have different light
absorption properties, we calculated changes in the reflected dual-wavelength light using the modified
Beer–Lambert law [46]. For this purpose, we introduced a new characteristic measure (H) which
reflects relative changes in oxyhemoglobin and deoxyhemoglobin.
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The fNIRS data acquisition and pre-processing procedure were performed with software NIRScout.
It is well-known that experimental fNIRS data are often affected by side physiological noises and
artifacts, whose characteristic frequencies are in the fNIRS frequency band, including Mayer wave
(with a typical frequency close to 0.1 Hz), respiration (close to 0.25 Hz), and heartbeat (close to 1 Hz).
As was mentioned in the review paper [47], in many cases the band-pass filtering is mostly sufficient
for removing low-frequency physiological noise in fNIRS data. According to this observation, we also
applied the 0.01–0.1 Hz band-pass filter to the fNIRS signals using NIRScout to prevent the effect of
side physiological activities.

The NIRScout software was also used for presentation of stimuli (text commands) and for logging
the events (such as beginning and end of motor activity) in the protocol file. According to this file, 35-s
long trials were formed by 5-s preparation before the text command, 15-s motor activity, and 15-s rest
interval as illustrated in Figure 2b. The 5-s interval at the beginning of each trial was used for baseline
correction. Specifically, the distribution of HbO/HbR was averaged over these 5 s and the obtained
value was subtracted from the corresponding trial.

2.5. Data Analysis

The characteristic value Hi (i = 1, . . . , N f NIRS, where N f NIRS = 20 is the number of fNIRS
channels) provides information about HbO/HbR dynamics obtained from corresponding fNIRS
channels. At the same time, to compare significance of such dynamics across the channels we need to
introduce new characteristic δHi,j that can be calculated as follows.

First, we calculate the value of 〈Hi〉T as Hi averaged for each fNIRS channel, separately for HbO
and HbR, across time interval T ∈ (5, 20) s corresponding to real or imaginary motor activity:

〈Hi〉T =
∫
T

∆Hi dt. (1)

In the previous papers [48,49], we have introduced the measure of connectivity based on the
reconstruction of functional links between neuronal ensembles in different frequency bands by
comparing spectral components of the EEG signals belonging to these bands. Here, we extend this
approach to the time domain for analyzing the restoration of connectivity by similarity of hemodynamic
responses in different areas of the motor cortex. This allows us to identify the cortical region in M1
with most similar activity for further classification of motor execution events.

According to our approach, we calculate matrices δHi,j of the difference between 〈H〉T for all
fNIRS channels i and j (i, j = 1, . . . , 20) for each type of motor activity (real and imaginary) for both
HbO and HbR as

dHi,j = 〈Hi〉T − 〈H j〉T . (2)

Previous fMRI studies [50] indicate that the activation of primary motor cortex during real
movement increases the level of oxyhemoglobin (HHbO) and decreases deoxyhemoglobin (HHbR).
Therefore, in the resulting matrices dHi,j we leave only values dHi,j > 0 for HbO and dHi,j < 0 for
HbR and take their absolute values for easier comparison. Finally, we construct the distributions
N(dHi,j) of dHi,j for each 20× 20 matrix obtained for HBO and HbR in the case of left/right real and
imaginary movements. These diagrams are present in Figure 3 for subject #3.

Based on the obtained distributions N(dHi,j) we introduce cumulative distribution functions
FdHi,j(h) = P(dHi,j ≤ h) which yield the probability for dHi,j to be smaller than h. The fourth quartile
of the F(h) distribution is the value of h ≥ 0.75. The corresponding cumulative distributions are
shown in Figure 3 by blue curves, while dashed vertical lines indicate the border of the fourth quartile.
As a consequence, we only consider dH̄i,j values that fall into the fourth quartile of distributions
(F(H̄i,j) ≥ 0.75) because the resulting values of dH̄i,j are the most significant and thus can be used
to find fNIRS channels suitable for the classifier (see Results). Thus, for further mathematical
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analysis we obtain the following matrixes of functional connectivity between different fNIRS channels
corresponding to the dynamics of oxygenation and deoxygenation, respectively:

δHi,j
HbO =

{
|dHi,j

HbO|, if dHi,j
HbO > 0 ∧ F(dHi,j

HbO) ≥ 0.75,

0, otherwise,
(3)

δHi,j
HbR =

{
|dHi,j

HbR|, if dHi,j
HbR < 0 ∧ F(|dHi,j

HbR|) ≥ 0.75,

0, otherwise.
(4)
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Figure 3. Distribution of |dHi,j| values (3) and cumulative distribution function F for different types of
motor activity. (Upper line) Real movement: (a) HbO and (b) NbR for right hand and (c) HbO and (d)
NbR for left hand. (Lower line) Motor imagery: (e) HbO and (f) HbR for right hand and (g) HbO and
(h) HbR for left hand. The vertical dashed line indicates the border of the fourth quartile (75%) of the
distributions. These results were obtained for subject #3.

2.6. Algorithm for Classification of Brain Activity During Real and Imagery Motor Executions

Let us now consider the online algorithm based on the construction of a decision tree for binary
classification of brain activity during real and imagery motor executions. The tree-like model of
decisions was created as a result of empirical analysis of the experimental data. The proposed algorithm
for processing fNIRS data is illustrated in Figure 4 in the form of a flowchat which contains the
following main steps.

1. For each considered channel i and type of motor activity (right/left hand, execution/imagery) we
subtract spatial oxyhemoglobin (HbO) (Hi

HbO) and deoxyhemoglobin (HbR) (Hi
HbR) distributions

for the right hemisphere (H j
R, fNIRS channels j of interest from right hemisphere) from the

corresponding distribution for the left hemisphere (Hi
L, symmetrical channels i from left

hemisphere). Similar to our approach (2) which uses average values, we calculate differences for
individual symmetrical channels in the left and right hemispheres as

∆Hi
HbO = Hi

HbO, L − H j
HbO, R , ∆Hi

HbR = Hi
HbR, L − H j

HbR, R . (5)

2. Then, we average ∆Hi
HbO and ∆Hi

HbOR over the time interval corresponding to motor activity
T ∈ (5, 20) s to find 〈∆Hi

HbO〉T and 〈∆Hi
HbO〉T as

〈∆Hi
HbO〉T =

∫
T

∆Hi
HbO dt , 〈∆Hi

HbR〉T =
∫
T

∆Hi
HbR dt. (6)
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3. For each separate fNIRS signal trial, we calculate characteristics CR and CL taking into account the
following criteria for each considered symmetric fNIRS channels in the left and right hemispheres.

(i) If 〈∆Hi
HbO〉T > 0 and 〈∆Hi

HbR〉T < 0 is true for one of the channels i, then CR := CR + 1
(value CR takes discrete values, minimal value is CR = 0 and peak value is equal to the
number of considered fNIRS channels of interest in one of the hemispheres).

(ii) If 〈∆Hi
HbO〉T < 0 and 〈∆Hi

HbR〉T > 0 is true for one of the channels i, then CL := CL + 1
(value CR takes discrete values, minimal value is CL = 0 and peak value is the same as peak
value of CR).

4. Finally, we make a decision according to the following criteria.

(i) If CR > CL, then right-hand (real or imaginary) motor activity takes place.
(ii) If CR < CL, then left-hand (real or imaginary) activity takes place.
(iii) If CR = CL, then the type of activity is uncertain.

i := first fNIRS channel of interest

i > imax

Calculate ΔHHbO and ΔHHbR (1) i i

Average <ΔHHbO>, <ΔHHbR> (2) i i

CR := 0, CL := 0

<ΔHHbO> > 0 and 

<ΔHHbR> < 0 

i

i CR := CR  + 1

CL := CL  + 1

i := next fNIRS channel

CR > CL

CR < CL

Right hand detection

Left hand detection

Uncertanty

Yes

Yes

Yes

Yes

No

No

No

No

<ΔHHbO> < 0 and 

<ΔHHbR> > 0 

Yes

No

Figure 4. Flowchart of online classification algorithm for fNIRS signals corresponding to left/right-hand
movement. The main advantage of the algorithm is that it can be used for both real and
imaginary movements.

2.7. Estimation of Classification Accuracy of Brain Activity During Motor Execution and Motor Imagery

In order to generalize the results of statistical analysis to an independent data set, we applied the
classical k-fold cross-validation technique [51] with k = 10 and 20 fNIRS trials to every subsample.
Additionally, the accuracy of the proposed detection method was evaluated by computing a percentage
of true positive and false positive, true and false negative detections, sensitivity and specificity [52,53]
using a 20-min experimental session, during which (i) the commands described in Section 2.3 (to perform
real/imaginary movement with left/right hand) were issued to the subject and (ii) the classification
algorithm recognised the type of movement using only 6 fNIRS channels. The true positive (TP) was



Sensors 2020, 20, 2362 8 of 17

computed as a percentage of correctly classified trials of right hand, and true negatives (TN) correctly
classified trials of left hand. The false positive/negative (FP/FN) represents a percentage of incorrect
automatically detected motor actions (FP being the trials classified as right-hand motor activity, but
actually performed as left-hand motor activity, while FN denotes the opposite situation).

The true positive fraction (TPF) or sensitivity, true negative fraction (TNF) or specificity, and false
positive fraction (FPF) of the method were assessed as [54]

TPF =
TP

TP + FN
× 100%, TNF =

TN
TN + FP

× 100%, FPF = 1− TNF. (7)

3. Results

3.1. Spatial Brain Activity During Motor Execution and Motor Imagery

Figure 5 displays the results of the analysis of complex spatial brain activity in the primary
motor cortex M1 detected by fNIRS. In Figure 5a,b we plot spatial distributions of oxyhemoglobin
and deoxyhemoglobin, averaged over 10 trials of right-hand motor execution and right-hand motor
imagery, respectively. The results for all 20 fNIRS channels are presented as mean values with a
standard error.

In the case of motor execution, as seen from Figure 5a, several fNIRS channels demonstrate
very specific dynamics; increasing oxyhemoglobin is accompanied by a corresponding decrease in
deoxyhemoglobin during any motor activity, either real or imaginary (in time intervals between vertical
dashed lines). We should note that this dynamics is much more pronounced in the left hemisphere
(e.g., for channels 2, 3, 7, 8) for right hand and in the right hemisphere (for symmetric channels 12, 13,
17, 18) for left hand. Such a behavior, strongly linked to specific fNIRs channels, opens the opportunity
to classify motor activity according to right and left hands.

It is worth noting that the above dynamics is less notable for motor imagery than for motor
execution. As seen from Figure 5b, the oxyhemoglobin level slowly increases approximately 10 s
after the beginning of movement imagination. The presence of the well-pronounced features of the
hemodynamic response during motor imagery is very promissing for using fNIRS signals, to some
degree, for detection of imaginary movements.

The most informative channels are those which display pronounced features of the hemodynamic
response when performing both motor execution and motor imagery with left or right hand.
The analysis of these channels is present in Figure 6 where we plot the matrices of functional
connectivity (3) and (4) in the motor cortex for different types of motor activity (real/imaginary)
related to right and left hands. First of all, one can clearly seen laterality between real and imaginary
movements of left and right hands. When moving the right hand, the channels 2, 7 and 8 in the
left hemisphere are most active exhibiting largest changes in the hemodynamic response. Whereas,
when moving the right hand, the symmetric channels 12, 17 and 18 in the right hemisphere display
the most pronounced activity. As a consequence, both an increase in oxygenation and a decrease in
deoxygenation turn out to be informative in the mentioned channels, and its dynamics and connections
with other channels are clearly seen in the connectivity matrices distributions. Secondly, the comparison
of the brain response to real and imaginary movements allows us to conclude that motor execution
yields a more accurate hemodynamic response. However, in the case of motor imagery, there is a strong
connection with channel 2 in the left hemisphere for right hand, and channels 11 and 12 in the right
hemisphere for left hand. At the same time, there is the activation (albeit less in amplitude as compared
to real movements) of channels 7/8 and 17/18 for left/right hand, respectively. Since the particular
areas of the motor cortex are responsible for different types of movement (real/imaginary), the fNIRS
neuroimaging can be used for real-time diagnostics of motor activity.
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Figure 5. Distributions (mean ± S.D.) of oxyhemoglobin (blue) and deoxyhemoglobin (green) for
(a) motor execution and (b) motor imaginary of right hand, for all 20 fNIRS channels. The data are
averaged over 10 trials obtained for one subject. Vertical dashed lines indicate the beginning and end
of each movement. The channel number is indicated in the upper right corner of each distribution.
The results were obtained for subject #3.
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Figure 6. Distributions of δH given by (3) and (4) across fNIRS channels for different types of motor
activity. (Upper line) Motor execution: (a) HbO and (b) HbR for right hand and (c) HbO and (d) HbR
for left hand. (Lower line) Motor imagery: (e) HbO and (f) HbR for right hand and (g) HbO and (h)
HbR for left hand. The results were obtained for subject #3.

3.2. Results of Real-Time Classification of Brain Activity

The main problem when creating any BCI based on motor imagery is a correct classification of
single EEG/MEG trials. While averaged trials are usually exhibit a clearly pronounced difference
between various types of movements (e.g., with left/right hand motor imagery), in the case of single
trials, the classification problem is more drastic due to a high variability of EEG or MEG brain signals
during imagination, as well as the existence of strong noise. Typically, the classification accuracy does
not exceed 80% when special mathematical methods are applied, such as, e.g., SVM machines [55],
wavelets [36,56], multilayer perceptrons [4], and recurrence quantitative measures [38].

The main advantage of fNIRS, as we demonstrated in the previous section, is a stable picture
of spatial dynamics of oxygenation and deoxygenation in the M1 motor cortex during both real and
imaginary movements. As seen from Figure 5, oxyhemoglobin and deoxyhemoglobin distributions
exhibit qualitatively different dynamics on fNIRS channels in the left hemisphere and symmetric
channels in the right hemisphere during 5–20 s intervals of right-hand motor execution/imagery.
Considering the difference between hemoglobin dynamics in the left and right hemispheres, we can
conclude that the oxyhemoglobin difference is mostly positive, while the deoxyhemoglobin difference
is typically negative. In the case of left-hand motor activity, the opposite situation occurs, namely,
the difference between signals from the left and right hemispheres is negative for oxyhemoglobin and
positive for deoxyhemoglobin. It should be noted that these differences are manifested in the dynamics
of i = {2, 7, 8} fNIRS channels in the left hemisphere and j = {12, 17, 18} symmetric channels in the
right hemisphere.

This situation is illustrated in Figure 7, where plot the differences in temporal distributions of
oxyhemoglobin and deoxyhemoglobin between left and right hemispheres for 10 trials recorded by
fNIRS channels 2 and 12 for one subject. These results display the difference in the brain response
between real and imaginary right-hand movements. The repeatability of the hemodynamic response
in the motor cortex is clearly seen in Figure 7, when the same type of motor action is performed or
imagined. One can also note the stability of the repeated maxima in the oxygenation difference between
left and right hemispheres corresponding to real movement, whereas the maxima corresponding to
motor imagery are unstable and varied over the trials. However, the tendency to increase the positive
difference remains. Similar conclusions can be made when analyzing deoxygenation, but in this case
the difference is negative. As a result, we can use these changes in oxygenation and deoxygenation
dynamics in the left and right hemispheres as markers for classifying the type of movement and
develop a method for online classification of right/left-hand motor activity based on fNIRS data.
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Figure 7. Differences in oxyhemoglobin (blue) and deoxyhemoglobin (green) distributions between
left and right hemispheres. The results are present for fNIRS channel 2 for 10 trials corresponding to
(a) real and (b) imaginary right-hand movements for subject #3. The vertical dashed lines indicate
the time moments of the beginning and end of the movements. The arrows mark zero level in each
distribution.

Finally, we implemented the classification algorithm described in Section 2.6 in our fNIRS-based
experimental system for online classification of real and imaginary motor actions. We used the
proposed classifier with six fNIRS channels i = {2, 7, 8} in the left hemisphere and j = {12, 17, 18}
symmetric channels in the right hemisphere. Notably, in the majority of cases the type of motor action
(both real and imagery) in all subjects was correctly identified by the data from only three fNIRS
channels. Table 1 shows the results of automatic classification of left/right hand real and imaginary
movements, as well as statistical analysis of true positive fraction, true negative fraction, and false
positive fraction calculated with Equation (7).

Table 1. The results of automatic classification of different types of motor action (mean± S.D.) using
i = {2, 7, 8} and j = {12, 17, 18} fNIRS channels in the left and right hemisphere, respectively.

Movement Automatic Detection TPF, % TNF, % FPF, %

TP FP TN FN
Real 99.0± 3.1 2.0± 4.2 98.0± 4.2 2.0± 4.2 98.2± 3.8 98.0± 4.2 2.0± 4.2
Imaginary 86.0± 10.7 25.0± 12.6 78.0± 9.1 14.0± 8.4 86.1± 7.9 76.2± 11.2 23.8± 11.2

Figure 8 shows the receiver operating characteristic (ROC) curves for right/left hand motor
action, which displays the values of false positive fraction (FPF) versus true positive fraction (TPF).
In the considered case, the ROC curves have two segments (0, 0)− (FPF, TPF)− (100, 100) (in %)
because a binary classifier (in our case, the decision tree) can only take the values of either 0 or 1.
The statistical analysis shows that the selectivity and specificity of the classifier are sufficiently high and
reach 85%–100%. The areas under the ROC curves in Figure 8 indicate that the accuracy of the binary
algorithm for motor execution is higher than for motor imagery. The number of incorrectly detected
and uncertain events is about 5%–20%. This reflects the fact that real and imaginary motor actions by
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left and right hands are reliably recognized using eight sources and eight fNIRS detectors, followed by
data processing of spatial brain activity with the simple online decision tree-based classifier.

0 20 40 60 80 FPF

20

40

60

80

TPF

1

2

Figure 8. Receiver operating characteristic (ROC) in the units of true positive fraction (TPF) versus
false positive fraction (FPF) [in %] of binary classification for motor execution (brown curve 1) and
motor imaginary (orange curve 2).

4. Discussion

The classification of brain activity trials associated with motor imagery using different methods of
neuroimaging is a modern research topic widely explored by many researchers from different fields of
science [13,57,58]. The diverse literature indicates that different brain regions can be involved in motor
imaginary [59], including primary motor cortex (M1) [60], supplementary motor area (SMA) [61],
posterior parietal cortex (PPC) [62], prefrontal cortex [63], etc. Moreover, there are at least two types
of motor imagination (kinesthetic and visual) characterised by the involvement of various areas of
the brain cortex. In particular, a well-pronounced suppression of alpha activity was observed in the
occipital region in subjects exhibiting the visual type of motor imagery. In contrast, kinesthetic subjects
displayed a pronounced suppression of mu activity in the motor and somatosensory cortexes [16].
In the referenced paper, 65%–80% classification accuracy was reported when choosing optimal MEG
channels for both kinesthetic and visual untrained subjects. Notably, such accuracy for untrained
subjects is similar to classification accuracy obtained in EEG studies with trained subjects [64]. Based on
the effect of suppressing mu/alpha and beta activity during motor imagery, it is possible to obtain
up to 70%–85% accuracy using various classifiers, including machine learning methods, SVM, ICA,
etc. [65]. The main obstacle for achieving higher classification accuracy of single trials is the significant
variability of temporal-spatial brain activity during motor imagery, which does not allow revealing
universal patterns associated with a particular type of motor imagination.

In addition, the use of the hemodynamic response for the classification of motor imagery (e.g.,
for neurorehabilitation) also imposes a number of limitations. Firstly, the hemodynamic response is quite
inertial, so that the registration of mild changes in oxygenation and deoxygenation of blood is required
in the area of interest. Secondly, due to a relatively high cost and a large size, the MRI equipment is
usually used in clinics for diagnosis, but not for regular training of motor imagery to restore motor
activity after a stroke, as in the case of using EEG. In this context, it is of considerable interest to use the
fNIRS device as a sensor of brain activity with an appropriate classification algorithm for the allocation
of motor-related brain activity on the sensor level. As we have shown, the hemodynamic response
generated by motor activity is strong enough to distinguish the corresponding region of the motor
cortex responsible for the motor pattern formation. Thanks to the hemodynamic analysis, which is not
sensitive to EEG background activity, it is possible to increase classification accuracy due to better signal
repeatability in the analysis of single events. As a result, the classification accuracy of imaginary activity
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was increased up to more than 90%, which is quite sufficient for medical practice in neurorehabilitation
procedures. It is important to emphasize that the fNIRS-based sensor is able to classify not only the
kinesthetic mode of imagination, which is characterized by a pattern similar to real movements but also
the visual type of imagination. However, we have to assume that in some cases, the classifier cannot
recognize motor activity (the “uncertanity” algorithm branch in Figure 4).

In conclusion, it should be noted that imaginary movements are often used to form control
commands in active brain-computer interfaces (BCI) [66,67]. Typically, such systems are based on
the registration of electric brain activity (EEG) due to the fact that EEG gives a very fast response to
changes in cognitive states. Moreover, EEG sensors are cheap and portable and do not impede the
subject movement. Although the proposed fNIRS-based sensor system is also portable that allows the
installation of sources and detectors faster and more convenient than EEG (or the same in the case of dry
EEG electrodes [68–70]), the fNIRS device is more expensive than EEG. At the same time, the number
of needed fNIRS channels for classifying activity is not high that can reduce the system cost. On the
other hand, due to slow hemodynamic response, fNIRS exhibits a relatively large delay in detecting
brain activity as compared to EEG, which restrict its application in BCIs. Nevertheless, the proposed
fNIRS classifier can be used as a motor imagery sensor in neurorehabilitation systems with patients for
which a 10–15 s latency is not significant. However, if such a BCI is used in game interfaces [71,72] or
control interfaces of external devices (wheelchair, manipulator, etc.) [73–75], such delay time is critical
and negate the advantages of our system in classification accuracy of brain states. One of the possible
solutions to this problem could be the use of hybrid fNIRS-EEG BCIs [76–78]. The consideration of this
type of classifier is out of the scope of this paper and might be the matter of future research.

5. Conclusions

In this paper, we have carried out the analysis of fNIRS data acquired during real and imaginary
movements. Distinct spatial dynamics in the motor cortex when performing motor actions (real or
imaginary) with the left or right hand exhibits pronounced laterality between two hemispheres.
This allowed us to reveal hemodynamic biomarkers for classification of the type of movement.
The proposed fNIRS-based sensor provides close to 100% recognition accuracy in the detection of real
movements, while the classification accuracy of motor imagery is a little smaller and reach 90%.

The important advantage of the proposed method is the possibility to efficiently classify different
types of movement, both real and imaginary, without recalculation of the system parameters.
This essential feature of the developed sensor results from pronounced laterality of the hemodynamic
brain response to motor activity.

The knowledge of the hemodynamic behavior in the motor cortex during real and imaginary
motor activity along with approaches for its detection can be helpful not only for fundamental studies
on human motor-related tasks but also for the development of fNIRS-based BCIs.
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Abbreviations

The following abbreviations are used in this manuscript:

fNIRS Functional near-infrared spectroscopy
BCI Brain-computer interface
EEG Electroencephalography
MRI Magnetic resonance imaging
MEG Magnetoencephalography
ERS Event-related synchronization
ERD Event-related desynchronization
HbO oxygenated
HbR deoxygenated
SVM Support vector machine
ICA Independent component analysis
ROC Receiver operating characteristic
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