
Coherence Resonance in Complex Networks

Alexander N. Pisarchik
Center for Biomedical Technology

Universidad Politécnica de Madrid
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Abstract—The paper is devoted to the analysis of coherence
resonance phenomena in complex networks of coupled nonlinear
oscillators. We explain how coherence and anticoherence reso-
nances can be revealed and experimentally measured in stochastic
and deterministic systems, and provide some evidence in various
networks. Particular attention is paid to a study of the influence
of coherent resonance on cognitive activity. According to our
research, intrinsic brain noise, which affects neural activity at the
microscopic level, has a positive effect at the macroscopic level.
Namely, it coordinates responses of different brain areas and
forces their interaction to efficiently process sensory information.
We find that brain noise can be altered as a result of attention
and cognitive training to optimize the efficiency of information
processing. The experimental and theoretical studies provide
substantial evidence for beneficial effects of internal brain noise
on cognitive performance. Coherence resonance in the brain
response to a cognitive task not only increases neural activity
in certain brain areas, but also provides pathways for neural
communication between distant regions. Thus, the study of
cognitive resonance allows us to find optimal parameters for
better system performance and efficient control of complex
network dynamics.

Index Terms—complex network, coherence resonance, noise,
chaos, coupled oscillators, brain

I. INTRODUCTION

The emergence of order in stochastic and chaotic networks

has been a challenging problem for scientists from various

fields of science. In some cases, the order resonates with the

level of noise or chaos. This phenomenon known as coherence
resonance was first discovered in a stochastic system where

the regularity (or coherence) maximizes at a certain level of

noise [1]. Then, a similar resonance behavior was observed

in noiseless chaotic systems [3]–[6] and called deterministic
coherence resonance. It should be noted that the well-known

phenomenon of stochastic resonance [7] is a particular case

of coherence resonance in periodically driven systems.

Coherence resonance was extensively studied in networks

of coupled neural oscillators, such as Rulkov maps [8],

FitzHugh–Nagumo [9], Morris–Lecar [10], and Hodgkin–

Huxley [11] models, and evidenced experimentally in dis-

tributed cortical neural network during sensory information

processing [11].

This work was supported by the Russian Science Foundation (Grant No.
19-12-00050).

On the other hand, an inverse resonant behavior, referred

to as anticoherence resonance, was also discovered, i.e., the

system order (or coherence) minimizes with respect to the

noise intensity [12], [13].

II. CHARACTERIZATION OF COHERENCE RESONANCE

There are several measures to quantify coherent resonance

[2], [5]. These are

• normalized autocorrelation function,

• correlation time,

• normalized standard deviation of peak amplitude (ampli-

tude coherence),

• normalized standard deviation of inter-peak interval (time

coherence),

• dominant spectral component (spectral coherence),

• signal-to-noise ratio (SNR),

• similarity function,

• entropy,

• connectivity (topological coherence).

To characterize deterministic coherence resonance, in addi-

tion to the above measure, the following values can be used

• signal-to-chaos ratio (SCR),

• Lyapunov exponents.

The dependences of all these measures versus noise or chaos

amplitude display a resonant behavior in the case of coherence

or anticoherence resonances.

Now we will show how these characteristics are defined.

A. Normalized Autocorrelation Function

The normalized autocorrelation function is defined as

C(τ) =
〈x̃(t)x̃(t+ τ)〉

〈x̃2〉 , (1)

where x is the measurable system variable, 〈x〉 is its time

average, x̃ = x− 〈x〉, and τ is the time lag. The higher C(τ)
means stronger coherence.

B. Correlation Time

The characteristic correlation time is defined as

τc =

∫ tmax

t0

C2(t)dt, (2)

where t0 is the duration of transients and tmax is the duration

of time series. The larger τc, the better the coherence.
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C. Normalized Standard Deviation of Peak Amplitude (Ampli-
tude Coherence)

The standard deviation of the peak amplitude Ap normalized

to the mean amplitude 〈Ap〉 can also serve as a measure of the

coherence resonance. For a network of oscillators, this value

is defined as

Ra =

√
〈Ā2

p〉 − 〈Āp〉2
〈Āp〉 , (3)

where the over-line indicates the average over nodes. The

amplitude coherence resonance occurs at the minimum of Ra

with respect to the noise or chaos amplitude.

D. Normalized Standard Deviation of Interpeak Interval (Time
Coherence)

Similarly, time coherence of a network of oscillators is

defined as the standard deviation of the interpeak interval tp
normalized to the mean interpeak interval 〈tp〉 as follows

Rp =

√
〈t̄2p〉 − 〈t̄p〉2

〈t̄p〉 . (4)

When Rp reaches a minimum value with respect to the noise

or chaos amplitude, we deal with coherence resonance.

E. Dominant Spectral Component (Spectral Coherence)

In a network of N coupled oscillators, the sum spectral

power Sfd at dominant frequency fd is higher when the

network synchronizes. Therefore, Sfd can serve as a measure

of the network coherence:

Sfd =
∑
i∈N

Si. (5)

F. Signal-to-Noise Ratio

The signal-to-noise-ratio (SNR) is the most common mea-

sure of the system coherence. Usually, SNR is calculated

to characterize stochastic resonance in systems with external

periodic signal. When the external modulation is absent, SNR

can be measured from the power spectrum as the ratio of the

spectral component SP at the dominant frequency fd to the

background spectral value SN at the same frequency, as shown

in Fig. 1. In the semilog scale of the power spectrum (in dBm),

this value can be measured as the difference

SNR(dBm) = SP − SN . (6)

G. Similarity Function

Coherence of system of coupled oscillators is related to their

synchronization [14], that can be characterized by similarity

function. The similarity function Zij of motions xi and xj of

oscillators i and j can be derived from

Z2
ij(τ) =

〈[xj(t)− xi(t+ τ)]2〉√〈xj(t)2〉〈xi(t)2〉
, (7)

Fig. 1. Definition of signal-to-noise ratio (SNR) and signal-to-chaos ratio
(SCR) from the power spectrum.

where τ is the time lag between the state vectors of the

interacting oscillators. The similarity function of a network

of N coupled oscillators can be calculated as

Z(τ) =
∑
i∈N

∑
j∈N

Zij(τ), i �= j. (8)

The value of the minimum of the similarity function δ =
minτ Z(τ) is related to lag synchronization. When the depen-

dence of δ on a control parameter displays extrema, this means

that the system exhibits coherence or anticoherence resonance.

The lower the minimum of the similarity function, the higher

the coherence.

H. Signal-to-Chaos Ratio

To characterize deterministic coherence resonance, signal-

to-chaos ratio (SCR) can be used. Namely, this is the ratio of

the spectral component SP at the dominant frequency fd to

the full-width at half-height W defined as

SCR =
SP

W
. (9)

The full-width at half-height is measured with respect to the

background spectral value SN (see Fig. 1).

I. Lyapunov Exponents

The Lyapunov exponents characterize the dependence of the

system dynamics on a small change in initial conditions. In

chaotic systems, the largest Lyapunov exponent is positive.

However, other exponents can be either negative or zero. In

the case of deterministic coherence resonance, some of the

exponents take maximum or minimum values with respect to

a control parameter. As an example, in Fig. 2 we plot the

largest Lyapunov exponent of the system of three unidirection-

ally ring-coupled Rössler oscillators in the parameter space

of mismatch Δ between their fundamental frequencies and

coupling strength σ [6]. One can see that the largest Lyapunov

exponent takes a minimum value (up to zero for Δ ≈ 0.25)

with respect to the coupling strength σ when the frequency
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Fig. 2. Largest Lyapunov exponent (right color panel) of three ring-coupled
Rössler oscillators in the (Δ, σ)-parameter space.

mismatch Δ is fixed. This means that the chaotic oscillators

behave periodically for a certain coupling strength (σ ≈ 0.3)

and thus their dynamics is more coherent.

J. Entropy

Since entropy is a measure of order, it can evidently be

used to quantify coherence. There are different type of entropy.

One of them, Shannon entropy of complex network is defined

as [15]

H(q) = −
N∑

k=1

q(k) log(q(k)), (10)

where q = (q(1), . . . , q(i), . . . , q(N) and q(k) is the remain-

ing degree given by

q(k) =
(k + 1)Pk+1

〈k〉 (11)

with Pk being the degree distribution and 〈k〉 is the average

degree. However, the above definition of the Shannon entropy

does not account for the network topology. Therefore, the

improved definition of topological Shannon entropy for the

case of a simple undirected network is derived as [16]

H = −
N∑
i<j

pij log pij , (12)

where pij is the probability to have a link between nodes i
and j.

K. Connectivity

When we deal with a complex network, it is important to

estimate its topological coherence determined by the number

of links which connect the network nodes. In this context, we

assume that the network topology is more coherent when a

larger number of nodes interact. This is especially appealing

when we deal with neural networks, for instance, the human

brain. The brain connectivity is crucial while processing and

analyzing information. In this case, the number of links

connecting distinct brain areas and their strengths can be

revealed by recording neurophysiological brain activity, e.g.,

by electroencephalography (EEG) of magnetoencephalography

(MEG).

III. EXAMPLES OF COHERENCE RESONANCES IN

COMPLEX NETWORKS

Coherence and anticoherence resonances were found in

various networks of coupled oscillators. Consider now some

examples.

A. Coherence and Anticoherence Resonances in a Star Net-
work

Now, we will demonstrate the existence of deterministic

coherence and anticoherence resonances in a small network

of unidirectional coupled oscillators in a star configuration in

the presence of a small mismatch between natural frequencies

of the coupled oscillators. The resonances are quantified in

amplitude and time by normalized standard deviations of the

peak amplitude and inter-peak interval with respect to the

coupling strength and frequency mismatch.

In particular, we consider the star network of 11 chaotic

Rössler oscillators with a small mismatch between their natural

frequencies. The normalized standard deviations of the peak

amplitude and inter-peak interval of one of the oscillators are

shown in Fig. 3 as a function of the coupling coefficient σ.

Fig. 3. Normalized standard deviation (right color bar) of peak amplitude
(upper panel) inter-peak interval (lower panel) of one of the variables of
one of the oscillators in a star network of chaotic Rössler oscillators in the
parameter space of the oscillator natural frequency ω and common coupling
strength σ.

The alternation of different colors in both upper and lower

panels in Fig. 3 displays a clear evidence of the existence of

amplitude and time coherence and anticoherence resonances

in the network.

B. Coherence Resonance in Cortical Network

Another evidence of coherence resonance was recently

found in the distributed cortical network of the human
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brain [11]. The resonance was experimentally revealed in the

brain connectivity during sensory information processing by

EEG.

Mona Lisa images with different contrast were present to

subjects and simultaneously EEG was recorded. The contrast

level was interpreted as the noise level. After the analysis

of the brain activity, the connectivity between distinct brain

areas was recovered in alpha (8–12 Hz) and beta (15–30 Hz)

frequency ranges. The resulted brain connectivity structure is

shown in Fig. 4.

Fig. 4. Brain connectivity in alpha (red links) and beta (blue links) bands
for different image contrasts (left) low contrast, (middle) middle constrast,
and (right) high contrast. The link strengths were estimated via wavelet
bicoherence.

The increasing number of links and their strength confirm

that efficient neural connectivity in the frontoparietal corti-

cal network is achieved through coherence resonance. We

have found that internal brain noise affects neural activity

at a microscopic level that leads to a positive effect at a

macroscopic level. In most cases, as was shown in recent

MEG experiments [17], brain noise helps to process sensory

information more efficiently. Specifically, the brain noise level

is determined by the size of the active neural network and can

change as a result of cognitive load and training in solving

a specific cognitive task. Hence, increased brain noise may

indicate more efficient information processing and improved

cognitive performance. This discovery bridges the gap between

the neural noise paradigm and global workspace theory.

IV. CONCLUSION

In this paper we have shown how coherence can be char-

acterized in complex network, and present some examples of

coherence and anticoherence resonances in small and large

complex network, in particular, in a star network of Rössler

oscillators and in the distributed cortical neural network. The

quantitative description of the coherence phenomena allows

better understanding of the noise influence on the system

dynamics and efficient control by adjusting parameters and

noise intensity.

Although significant advance has been achieved in the study

of network coherence, e.g., neural communication through co-

herence resonance, some coherence measures still require fur-

ther investigation, in particular, network entropy and structural

coherence resonance. The study of stochastic resonance arises

important questions for future research: Is the endogenous

brain noise constant or changes over time? and if the latter is

true, what are the mechanisms underlying the noise change?
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