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ABSTRACT

In recent years, adaptive higher-order interactions have garnered significant attention. However, most studies on chimera states in higher-
order interaction networks have not considered coupling adaptation. In this work, we study a network of Kuramoto phase oscillators with
first- and second-order interactions and adaptive couplings in two different network topologies: nonlocal and small-world. We show that,
depending on the coupling strength, adaptation can induce a chimera state (where part of the network is synchronized, while the rest remains
asynchronous) from a synchronous state or, conversely, synchronize a chimera state. Additionally, we find that small-world networks of
Kuramoto phase oscillators exhibit a larger region of chimera states compared to nonlocal networks. Randomness of the topology realization
plays an important role, and averaging over a number of realizations leads to increasing the possibility of a chimera state establishing. This
work presents a novel approach to controlling the dynamics of adaptive higher-order interaction networks.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0296464

Chimera states, characterized by the coexistence of synchronized
and desynchronized dynamics within a network of coupled oscil-
lators, represent a fascinating phenomenon in nonlinear science.
In this work, we explore how adaptive higher-order interactions
influence the emergence and stability of chimera states in net-
works of Kuramoto phase oscillators. By introducing dynamic
adaptation mechanisms for both first-order (pairwise) and
second-order (non-pairwise) coupling strengths, we uncover a
rich spectrum of dynamical transitions. Our results demonstrate
that coupling adaptation can actively control network behav-
ior, inducing chimera states from fully synchronized regimes or,
conversely, synchronizing previously disordered states. We sys-
tematically compare two fundamental network topologies, non-
local and small-world, revealing that small-world architectures
support a significantly broader parameter range for chimera
states. Furthermore, the inherent randomness in small-world
topology realizations enhances the robustness of these states, as
confirmed by ensemble averaging. Notably, adaptive coupling
enables the formation of antiphase synchronized clusters from

incoherent dynamics or the destabilization of synchronization
into chimera patterns. These findings are rigorously quantified
using the strength of incoherence measure and spatiotemporal
analysis.

I. INTRODUCTION

The study of synchronization in complex networks has been a
central topic in nonlinear dynamics and complex systems theory for
decades. Synchronization phenomena are observed in a wide range
of natural and artificial systems, from biological neural networks
to power grids and coupled oscillators.' Among the most widely
studied models for understanding synchronization is the Kuramoto
model, which describes the dynamics of coupled phase oscillators
and has become a paradigmatic framework for exploring collective
behavior in networks.”""'

In recent years, there has been growing interest in the role
of higher-order interactions in shaping the dynamics of complex
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systems.'””"* Traditional models of network dynamics often focus
on pairwise interactions, but many real-world systems exhibit inter-
actions that involve three or more units simultaneously. These
higher-order interactions can significantly influence the collective
behavior of networks, leading to phenomena, such as multistability,
first-order transition, cluster synchronization, and the emergence
of chimera states.""~*" Chimera states, characterized by the coexis-
tence of synchronous and asynchronous dynamics within the same
network, have attracted particular attention due to their counterin-
tuitive nature and potential applications in neuroscience and other
fields.”

Higher-order interactions, which go beyond the traditional
pairwise connections, are increasingly recognized as essential for
understanding the behavior of complex systems. For instance,
in social networks, group interactions (e.g., team collaborations
or group decision-making) often involve more than two indi-
viduals and cannot be fully captured by pairwise relationships.”’
Similarly, in biological systems, such as neural networks, inter-
actions among multiple neurons (e.g., through synaptic triads or
glial cells) play a crucial role in information processing and net-
work dynamics. These higher-order interactions can lead to new
types of collective behavior that are not observed in systems with
only pairwise connections, such as the stabilization of specific
synchronization patterns or the emergence of novel dynamical
states.”

The adaptation of coupling strengths in dynamical networks
is another important factor that can profoundly affect synchroniza-
tion patterns.” Adaptive networks, where the coupling strengths
evolve over time based on the system’s dynamics, provide a more
realistic representation of many biological and technological sys-
tems. For example, in neural networks, synaptic plasticity allows
for the adaptation of connections between neurons, which is cru-
cial for learning and memory processes.”’ The previous studies'*”'
on higher-order interactions inducing chimera states were observed
without any adaptation in the coupling functions. Understanding
how adaptive mechanisms influence synchronization in networks
with higher-order interactions is, therefore, of great theoretical and
practical importance.

In this work, we numerically investigate a network of
Kuramoto phase oscillators with first- and second-order interac-
tions, where the coupling strengths adapt over time. We consider
two network topologies: a nonlocal topology and a small-world
topology, which are known to exhibit distinct synchronization prop-
erties. Our goal is to explore how the adaptation of couplings
influences the emergence and stability of different synchronization
regimes, including synchronous, asynchronous, and chimera states.
By analyzing the interplay between higher-order interactions and
adaptive coupling mechanisms, we aim to provide new insights
into the control and manipulation of synchronization patterns in
complex networks.

The rest of the paper is organized as follows. In Sec. II, we
describe the model of Kuramoto oscillators with higher-order inter-
actions and adaptive couplings, as well as the methods used to
quantify synchronization and classify different regimes. In Sec.
111, we present the results of our numerical simulations for both
nonlocal and small-world topologies, highlighting the effects of
coupling adaptation on the network dynamics. Finally, in Sec. IV,
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we summarize our findings and discuss their implications for the
study of complex systems.

Il. METHODS
A. Adaptive higher-order interaction network

We consider a network of N Kuramoto phase oscillators with
higher-order interactions and adaptation of couplings described by
the following system of differential equations:

do; N )
d—t’ =w+L, FZIC}] sin(g; — ¢;)
N N
+LoY Y Chsing; + ¢ — 200, (1)

j=1 k=1

where ¢; is the phase of the ith oscillator (i=1,2,...,N), o =1
is the frequency of oscillators, and L; and L, are the strengths of
the couplings of the pairwise (first order) and non-pairwise (second
order) interactions, respectively. Here, C' and C* are the adja-
cency matrix and tensor of the pairwise and non-pairwise couplings,
respectively. The elements of C! and C? are adapted as follows:

d‘% = (R-}).
= (r-ci),

where p;, are the speeds of the adaptations and R is the global order
parameter described as

2

; 3)

N
Z e«/jlq’i(tff)
i=1

1 &
R —_—
NT,, —
where T,, = 100.

Initial coupling matrix C° is randomly generated using the
Watts-Strogatz algorithm®' with parameters k (node degree) and p
(rewiring probability). We consider two network topologies: (i) a
nonlocal one with k =4 and p = 0 and (ii) a “small world” with
k = 5and p = 0.3. This matrix is used as the initial pairwise connec-
tivity; i.e., C' = C°. The second-order interaction tensor C* is then
constructed by identifying all-to-all connected triangles within this
network. During a transient period ¢t < T, = 40, the adaptation is
turned off, so C,ll = Cizjk =0.Fort> T, C}] and ijk are calculated
using Eq. (2).

The system of differential equations (1) and (2) is solved by
using 4th order Runge-Kutta methods with time step At = 0.01 and
N = 100. The initial conditions of ¢; are generated randomly in a
uniform distribution [0, 277 ] and used for all simulations.

B. Measure of synchronization

In order to properly distinguish the three different paramet-
ric regimes corresponding to the three different dynamical states,
namely, synchronous, chimera, and asynchronous, we calculate the
conventional statistical measure strength of incoherence (SI)'** as
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follows:
1 n
SI=1-— — R

s =H(d—o (),

(4)

where H(-) is the Heaviside step function, d = 0.5 is the threshold,
n =5 is the number of bins with length b = N/n = 20 of which all
oscillators are divided, chosen analogously to,'* and o (J) is the local
standard deviation measured for each bin as

1 b
a(l)=< T (Aw,-—<A¢>)2>, (5)

i=14+(-1)b ;

where Ag; is the difference between ¢; and the closest next ¢;
G=i+1,...,N,1,...,i— 1), which is coupled to ¢; according to
C', (-); is the average over time, and (Ag) is the mean value of all
Ay,

1 N
(Ap) = ; Ag. (6)

Then, we define the regime as follows: SI < 0.05 is an asyn-
chronous regime, SI > 0.95 is a synchronous one, and 0.05 < SI
< 0.95 is a chimera state.

Ill. RESULTS

Now, to explore the collective behaviors, we consider two
different types of network topologies, namely, nonlocal and small-
world networks.

A. Nonlocal topology

First, we investigate the behavior of the network of Kuramoto
phase oscillators with a nonlocal topology. Previously, such a net-
work without adaptation (p; = p, = 0) has been investigated in
detail in Ref. 18. The authors have shown the presence of a chimera
state in a Kuramoto network with higher-order interactions. We
investigate the different synchronization regions in Fig. 1(a) by
simultaneously varying the coupling strengths L, and L,. To dis-
tinguish different regimes, we calculate the conventional statisti-
cal measure strength of incoherence (SI) [Eq. (4)]. White, black,
and orange regions correspond to a synchronous state (SI > 0.95),
an asynchronous state (SI < 0.05), and a chimera state (0.05 < SI
< 0.95).

As one can see, all three regimes can be easily separated from
each other. The synchronous regime in Fig. 1(a) is observed in
the bottom-right triangle with the border line L, < 1.2L;. Thus, it
requires the presence of the first-order couplings, and the strength of
the second-order couplings cannot exceed 1.2L;. The asynchronous
regime is observed on the opposite side in the top left trian-
gle bounded by line L, > 2.85L; and requires the presence of the
second-order couplings. Between the lines, there is an orange area
of a chimera state.

Next, we investigate how the adaptation influences the net-
work’s dynamics. Figure 1(b) illustrates the same map as in
Fig. 1(a) but with (p; = p, = 0.01). As one can see, the most part
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Without adaptation With adaptation

0
(¢ 0 -01 -02 -03 -04 L (d) 0 -01 02 -03 -04 L

1

FIG. 1. Maps of characteristic regimes established in the network of coupled
Kuramoto oscillators depending on the pairwise coupling strength L4 and non-
pairwise coupling strength L, for the nonlocal topology of couplings for (a) and
(b) positive and (c) and (d) negative couplings and in the (a) and (c) absence
(01 = p2 = 0) and (b) and (d) presence (p1 = p, = 0.01) of the adaptation.
Here, white, black, and orange regions represent the regions of synchronous,
asynchronous, and chimera states, respectively. The stars indicate the param-
eters for the time series in Fig. 2.

of it corresponds to the synchronous regime. The asynchronous
state is observed mostly for L, = 0,L; € [0.25,0.5], and L; =0, L,
€ [0,0.25]. The chimera area corresponds to small values of both
first and second order coupling strengths.

We should note that the synchronous regime for a system with-
out adaptation always corresponds to one-cluster synchronization,
while in the presence of adaptation, we observe antiphase two-
cluster synchronization for a wide range of parameters. Figure 2(a)
illustrates this effect when adaptation induces antiphase two-cluster
synchronization from one-cluster synchronization.

All previous results were obtained using only positive cou-
plings: L; > 0,L; > 0. Then, we investigate the network with only
negative couplings. As one can see in Fig. 1(c), the most typi-
cal regime for such a case without adaptation is an asynchronous
one. Remarkably, without second-order couplings, only the asyn-
chronous regime is observed. However, if the second-order strength
is low (—=0.15 < L, < 0), for —0.5 < L; < —0.15, we can observe
a synchronous regime. Turning on the adaptation leads inducing
chimera state for a wide range of coupling strengths [Fig. 1(d)].
Also, for L; = 0 and —0.6 < L, < —0.05, an asynchronous regime
is turned to a synchronous one.

As a result, adaptation in the Kuramoto network with nonlo-
cal topology can lead to changing a regime. For example, we can
induce a chimera state from a two-cluster synchronization regime
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FIG. 2. Spatiotemporal diagrams (top) and local order parameter R; (bottom) for
all phase oscillators of the Kuramoto network illustrating switching between the
regimes under the influence of coupling adaptation for the case of nonlocal topol-
ogy: (a) a transition from the regime of full synchronization with a running phase
to the regimes of antiphase synchronization with two clusters at Ly = L, = 0.2;
(b) a transition from antiphase synchronization to the chimera at
Ly = —0.35,L, = —04; (c) a transition from the chimera state to the
regime of antiphase synchronization with two clusters at Ly = 0.2, L, = 0.35;
and (d) a transition from the asynchronous state to the regime of antiphase
synchronization with two clusters at Ly = 0, L, = —0.4.

[Fig. 2(b)], or oppositely suppress a chimera and induce antiphase
two-cluster synchronization [Fig. 2(c)]. Also, it can synchronize the
asynchronous state into two antiphase clusters [Fig. 2(d)].

The asymmetry in the effect of adaptation for positive and
negative couplings can be attributed to the different roles of attrac-
tive and repulsive interactions. Adaptive strengthening of positive
couplings favors global synchronization, while adaptive strength-
ening of repulsive couplings leads to both synchronization and
desynchronization, facilitating the emergence of chimera states.

Although the qualitative structure of the phase diagrams is
robust to different initial phase conditions, the exact boundaries
between dynamical regimes may vary slightly due to multistability.

B. Small-world topology

Then, we investigate another type of network topology, a small-
world one, which is characterized by the presence of both local
and nonlocal couplings. First, we simulate the network without
adaptation. Figure 3 illustrates the dependence of the global order
parameter R on the coupling strengths of the first L; and the sec-
ond L, orders. As one can see, the maximal R = 1 is achieved for
maximal L, = 1 and minimal L, = 0. The minimal R = 0.1, corre-
sponding to the absence of synchronization, is obtained for L, = 0
and does not depend on L. Increasing the first-order couplings
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FIG. 3. Two-parameter diagram of the global order parameter of a network of
Kuramoto phase oscillators depending on the coupling strengths L4 and L,.

and decreasing the second one leads to increasing the global order
parameter, and the opposite behavior leads to decreasing R.

Let us consider the case when L; = L, = 0.01 and analyze how
adaptation of the couplings of different orders changes the dynam-
ics. Figure 4(a) illustrates an example of time-space dependencies
when we adapt only the first-order couplings (p; = 0.01, p, = 0).
The vertical line at T, = 40 corresponds to the time moment of
starting the adaptation process. As one can see, adaptation of only
the first-order couplings leads to one-cluster synchronization. If we
adapt only the second-order ones (p; = 0, p, = 0.01), the oscillators
form two antiphase clusters [Fig. 4(b)]. In case of adapting both first-
and second-order couplings (p; = 0.01, p, = 0.01), we also observe
formation of two antiphase clusters but in less time [Fig. 4(c)].

Because the number of oscillators in each synchronous cluster
can differ, we investigate the dependence of the cluster’s sizes N;
and N, on the adaptation strengths p, and p, for L, = L, = 0.01.
As one can see in Fig. 5, smaller p, and larger p; result in larger
N [Fig. 5(a)] and smaller N, [Fig. 5(b)] and vice versa. The sum
Nui= Ny + N, =100 is constant for any adaptation strengths
[Fig. 5(c)]. As a result, the global order parameter R is fully corre-
lated with the size of the biggest cluster N; [Fig. 5(d)].

We conduct the same investigation for negative couplings
(L; = —0.01, L, = —0.01). In Fig. 6, one can see that not all
oscillators belong to any synchronous cluster (N, € [26,46]), and
the clusters’ sizes change within similar ranges (N; € [11,22],
N, € [11,25]) depending on p; and p,. The number of synchronous
oscillators is maximal for p; = 0.01 and p, = 0.07 and 0.08. Increas-
ing p; and p, decreases the number of synchronous oscillators and
global order parameter [Fig. 6(d)].

Next, we analyze the whole range of positive and negative cou-
plings with and without adaptation. Figure 7(a) illustrates the map
of the regimes established in a small-world network depending on
the positive coupling strengths L; and L, without adaptation. As
one can see, the asynchronous regime (black area) is observed for
any second-order coupling strength L, for L; = 0, and for L; > 0,
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0
(c)

FIG. 4. Time-space dependences of the dynamics of all Kuramoto phase oscilla-
tors for Ly = L, = 0.01 with adaptation of couplings of (a) only the first order for
p1=0.01, p, = 0; (b) only the second order for p4 =0, p, = 0.01; and (c) the first
and second order p1 = p, = 0.01. A vertical white dashed line corresponds to the
time moment T, = 40 when the adaptation process starts.

L, should be larger than 0.05 4+ 3.15L;. The synchronous regime
is established for L, € (0,0.5] and L, < L, and lies in the bottom-
right corner. Both boundaries are similar to the nonlocal topology.
All other values correspond to the chimera state of partial synchro-
nization. Comparing with Fig. 1(a), we conclude that the parameter

P, N| P, Nz
0.08 67 008 35
0.06 0.06

66 34
0.04 0.04

65 33
0.02 0.02

0 64 0 32
(@) 0 002 004 006 008 p, (b) 0O 002 004 006 008 p,

Na\l R

P, P,
102
0.08 0.08 034
0.06 100 0,06
032
0.04 9g 004
0.02 0.02 030
%
0 0 0.28

(c) 0 002 004 006 008 p, (d) 0 002 004 006 0.08 p,

FIG. 5. Two-parametric dependencies on the first- and second-order adaptation
strengths p1 and p;, of (a) and (b) the number of oscillators belonging to (a) the
first, (b) the second, and (c) both synchronous clusters, and (d) the global order
parameter. Here, Ly = 0.01 and L, = 0.01.
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0 0
(a) 0 002 004 006 008 p, (b) 0 002 004 006 008 p,
R
0, Nau 0,
0.08 42 008 0.030
0.06 37 006 0.025
0.04 0.04
32 0.020
0.02 0.02
27 0015
0 0
(c) 0 002 004 006 008 p, (d) 0 002 004 006 0.08 p,

FIG. 6. Two-parametric dependencies of (a)—(c) the number of oscillators belong-
ing to (a) the first, (b) the second, and (c) both synchronous clusters, and (d) the
global order parameter on adaptation strengths of first- and second-order p4 and
p1. Here, Ly = —0.01 and L, = —0.01.

region corresponding to chimera states is larger for the small-
world topology than for the nonlocal one, while synchronous and
asynchronous areas are smaller.

Adaptation of the positive couplings in such a network
[Fig. 7(b)] leads to almost disappearance of an asynchronous regime,
which is observed only for L, = 0 and L, € [0.25,0.5]. The chimera
state is observed for either low first- or second-order couplings,
while the initial chimera area is transformed to a synchronous one.

In case all couplings are negative [Fig. 7(c)], only asynchronous
and a chimera states can be observed, and the latter is estab-
lished only for 0 > L, > 1.5L;. The adaptation of negative couplings
in a small-world network of Kuramoto phase oscillators expands
the area of the chimera state and also allows establishing a syn-
chronous regime for L; = 0 and L, > 0. One can see that for L, = 0,
whether adaptation is present or not, only the asynchronous regime
is observed, and this is independent of L,.

We should note that in the case of small-world topology, ran-
domness plays an important role in forming a particular coupling
matrix. It can be crucial, for example, in reservoir computing where
the specific topology of the reservoir layer network strongly influ-
ences the accuracy.” " To investigate the influence of the particular
topology on the system’s dynamics, we randomly generate five dif-
ferent coupling matrices using a Watts—Strogatz algorithm with
the same parameters (k = 5,p = 0.3) and simulate the network of
Kuramoto phase oscillators [Egs. (1)-(3)] using each of them started
with the same initial conditions. Then, we calculate the strength of
incoherence [Eq. (4)], average it over all five topologies and define
the regime.

The obtained maps are shown in Figs. 7(e)-7(h). As one can
see, the area of a chimera state has become larger for all considered
cases. The boundaries of synchronous and asynchronous regimes
for the case of positive couplings without adaptation [Fig. 7(e)]
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Averaging over five topologies
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FIG. 7. Maps of characteristic regimes established in the network of coupled Kuramoto oscillators depending on the coupling strengths of the first Ly and second L, orders
for (a)-(d) a random small-world topology of couplings and (e)-(h) averaged over five topologies for (a), (b), (€), and (f) positive and (c), (d), (g), and (h) negative couplings and
in the (b), (d), (f), and (h) presence (01 = p, = 0.01) and (a), (c), (e), and (g) absence (o1 = p, = 0) of the adaptations. Here, white, black, and orange regions represent

the synchronous, asynchronous, and chimera states, respectively.

have changed to L, = 0.7L; and L, = 4L,, respectively, reducing the
corresponding areas. When adaptation is active, the area of an asyn-
chronous regime has not changed over averaging, but the chimera
state is now observed for almost any parameters in the following
ranges: 0 < L, < 0.2 forany L; and L; < 0.2 for L, > 0.

In the case of negative couplings [Fig. 7(g)], similar to (c), only
asynchronous and chimera states can be observed, but the boundary
line is changed to L, = 2L, increasing the area of the chimera state.
In the presence of adaptation, the asynchronous regime almost com-
pletely disappears, so the area of L; > 0 and L, > 0 corresponds to
chimera, while L, = 0 is the asynchronous stateand L; =0, L, > 0
is the synchronous one.

IV. CONCLUSION

In this work, we investigated the dynamics of a network of
Kuramoto phase oscillators with adaptation of first- and second-
order couplings in two different topologies: nonlocal and small-
world. The primary focus was on studying the influence of coupling
adaptation on the emergence and transition between synchroniza-
tion regimes, including the chimera state.

We found that adaptation of the couplings plays a crucial role
in establishing the regime in the network. It can lead to inducing a
chimera state from the two antiphase clusters, or oppositely suppress
a chimera and induce the state of antiphase two-cluster synchro-
nization. It can also lead to synchronization of the asynchronous

regime and vice versa. These effects are observed for both investi-
gated topologies. For nonlocal topology depending on the coupling
strength of the first and second order, any of three regimes can be
observed with and without adaptation in a wide range of the cou-
pling strengths. For small-world topology in the case of using only
negative couplings, only two regimes exist without adaptation, and
the adaptation induces a synchronous regime in a small range of
the parameters. For the case of using only positive couplings for
small-world topology with adaptation of the couplings, mostly two
regimes (synchronous and chimera) exist, while the asynchronous
one is observed for only a few values of the coupling strengths.

We investigated the influence of the particular small-world
topology realization by averaging the results over five random
topologies with the same parameters and initial conditions. It was
found that such averaging leads to an increase in the area of the
parameters corresponding to the chimera state. Particularly, adapta-
tion of negative couplings on average leads to chimera states, while
synchronous and asynchronous regimes exist only in the absence of
either first- or second-order couplings.

The obtained results open new possibilities for controlling the
dynamics of complex networks in various applications, including
neuroscience and complex systems theory.

Future work may explore mixed-sign couplings (e.g., L; > 0,
L, <0orL; <0,L, > 0), which could lead to novel synchroniza-
tion patterns and further enrich the control of chimera states via
adaptive higher-order interactions.
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