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a b s t r a c t 

The difference between phases of weakly coupled chaotic oscillators fluctuates around its 

average value similar to a random walk. For a very weak coupling strength, the phase dif- 

ference has the same stochastic properties as a Brownian motion characterized by a -2 

scaling exponent in its power spectrum, and for stronger coupling it behaves as a pink 

noise with a close to -1 power law. Ordinary methods of stochastic analysis based on the 

Fourier spectrum and detrended fluctuation analysis are not able to distinguish determin- 

ism from the time series of this phase drift. Nevertheless, determinism can be revealed 

by the method of ordinal pattern symbolization which allows finding forbidden patterns 

in the time series. The efficiency of this approach is proven with the Brownian motion, 

where non-occurring patterns are also detected. The robustness of the method to noise is 

demonstrated with coupled Rössler oscillators. The stochastic properties of phase fluctua- 

tions can be promising for cryptography and secure communication using chaotic systems. 

© 2018 Published by Elsevier B.V. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Chaos and noise are two important forms of dynamical movement in nature; both are irregular and unpredictable in

the distant future (relative to the horizon time of the chaotic system). Because of a number of common properties, the

discrimination between chaos and noise is a challenging task. Since the discovery of chaos, scientists have been faced with

the problem of how to distinguish a deterministic motion from a stochastic process in natural time series [1–7] . Traditional

methods are based on nonlinear forecasting by comparing predicted and actual trajectories and measuring errors [1] . The

forecast accuracy diminishes with increasing time intervals for chaotic time series, which does not occur for uncorrelated

noise. Another method proposed by Kaplan and Glass [2,3] suggests that all tangents to a phase space trajectory generated

by a deterministic system have similar orientation independently of the position in the phase space, while stochastic time

series display a phase-space dependent behavior of their tangents. 

Among other approaches to distinguish between chaotic and stochastic time series are methods based on the calculation

of correlation dimension and entropy. In particular, Grassberger and Procaccia [8] showed that a finite value of the corre-
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lation dimension is a signature of deterministic dynamics. However later, Osborne and Provenzale [9] found that not all

systems obey this rule; in particular, stochastic systems with power-law spectra can have finite correlation dimension. Alter-

natively, an entropic analysis at different resolution scales can help in the classification of chaotic or deterministic behavior

of a signal. This can be done by examining the dependence of the entropy and the finite size Lyapunov exponent on the res-

olution [4,10] . Rosso and co-workers [5,11] proposed to combine statistical complexity and normalized Shannon entropy for

construction of a causality entropy-complexity plane. In a similar way, by combining two information quantifiers, namely,

the normalized Shannon entropy and the Fisher information, a causality Shannon–Fisher plane can be created, where chaotic

and stochastic behaviors occupy different areas [6,12] . All these methods based on information theory significantly improve

the understanding of associated time series’ origins. 

The problem of the distinction between chaos and noise is not easy because some deterministic systems exhibit prop-

erties of stochastic motion. A famous example is “microscopic” chaos discovered by Gaspard et al. [13] . From an entropic

analysis of the experimental data on the position of a Brownian particle in a liquid, they claimed that its diffusive behavior

is the consequence of chaos on the molecular scale. However later, Cencini et al. [4] showed that this result does not give di-

rect evidence that the system is deterministic (chaotic). Furthermore, they assumed that the distinction between chaos and

noise makes sense only in very peculiar cases, e.g. low-dimensional systems. Otherwise, we may only describe the system

complexity using nonlinear and statistical characteristics without any definitive classification of its dynamics. 

In this paper we consider a particular case of deterministic motion, the phase difference between weakly coupled chaotic

oscillators near the onset of phase synchronization. The choice of this specific motion is not accidental. In this synchronous

state, the phases of the coupled oscillators synchronize while the amplitudes remain uncorrelated [14] . Phase synchroniza-

tion frequently occurs in weakly interacting chaotic systems, including electronic circuits [15] , lasers [16] , ecological sys-

tems [17] , neurons [18] , cardio–respiratory rhythm [19] , and brain [20] . Phase synchronization is particularly relevant for

biomedical applications. For example, phase synchronization and desynchronization in the brain neural network may re-

veal the connectivity between different brain areas, that can play a putative role in pathologies, such as schizophrenia [21] ,

Parkinson’s disease [22,23] , Alzheimer’s disease [24] , and epilepsy [25,26] , as well as in important brain functions, such as

perception [27] and attention [28,29] . The existence of intrinsic noise makes the synchronization problem more complicated

[30] . Therefore, the analysis of the relation between phases of coupled oscillators and the knowledge of their characteristic

properties may have important practical applications in many fields of science and industry. 

While instantaneous phase φ of a dynamical system 

˙ x = f (x ) in the case of an asymptotically stable limit cycle can be

defined from the condition 

˙ φ(x (t) = const [31] , its definition for chaotic and stochastic systems is somewhat problematic.

The most popular approaches to associate an instantaneous phase to a chaotic trajectory are the introduction of geometric

phases, the use of the Poincaré section, Hilbert transform, and the definition of phase coordinates [14,32] . Since in our work

we focus on the data analysis to distinguish determinism in time series, we have to estimate phase coordinates directly

from time series of one variable only. Evidently, the geometrical definition in this case is not possible because the phase

space structure is unknown. Moreover, unlike periodic systems, in stochastic and chaotic systems the phase is a function

of time [32,33] . Therefore, here we use the phase definition based on the descretization of scalar time series by repetitive

characteristic marker events [32,34] (such as local maxima or peaks), often observed in biomedical data, population and

climate dynamics. These marker events can be associated with a phase increase of 2 π , and all values of the instantaneous

phase between successive maxima can be computed by linear interpolation as 

φk (t) = 2 πk + 2 π
t − t k 

t k +1 − t k 
(t k < t < t k +1 ) , (1)

where t k is the time at which the k th event occurs. This phase definition is very useful for practical applications when

only one system variable is available for measurement, because it allows one to obtain estimation simply from the scalar

chaotic time series, computing the t k from the times of successive local maxima or minima, without having to reconstruct

a higher-dimensional phase space to explicitly find a Poincaré section. 

In the regime of phase synchronization of two unidirectionally coupled chaotic oscillators, the average time difference

between successive events (peaks) of the response ( r ) system variable 〈 �t r 〉 = 〈 t r 
k +1 

− t r 
k 
〉 is the same as that of the drive

( d ) system variable 〈 �t d 〉 = 〈 t d 
k +1 

− t d 
k 
〉 , and both time differences are equal to the average oscillation period, i.e., 〈 �t r 〉 =

〈 �t d 〉 = 1 / f ( f being the dominant frequency in the power spectrum of time series). Therefore, the phase difference between

the k th peaks in time series of two coupled oscillators can be calculated as [33] 

δφk = φr 
k (t) − φd 

k (t) = 2 π(t r k − t d k ) f, (2)

where φr 
k 
(t) and φd 

k 
(t) are the phases of the k th peak of the response and drive systems, calculated by Eq. 1 . 

It should be noted that the amplitude and phase dynamics of coupled chaotic oscillators are quite different, although

both are deterministic. The determinism in the amplitude dynamics can easily be distinguished by different methods, e.g., by

a spectral or a phase-space analysis. Specifically, the power spectrum of amplitude fluctuation δx = x r − x d has a dominant

frequency f close to the natural frequency f 0 of the chaotic oscillator, while the phase drift δφ( t ) between coupled oscillators

does not have any dominant frequency and manifests itself as random fluctuation. A significant difference between the

amplitude and phase dynamics can be seen in phase space, where any patterns can be a signature of determinism, whereas

a homogeneous structure means randomness. To illustrate this difference, we reconstruct the phase spaces for the amplitude

and phase differences in two unidirectionally coupled identical chaotic Rössler oscillators (the complete system of equations
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Fig. 1. Reconstructed phase spaces of the differences between (a) phases and (b) amplitudes of two coupled Rössler oscillators in the regime of phase 

synchronization ( σ = 0 . 005 , τ = 10 ). The system equations and parameters are given in Sec. IV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are presented in Sec. IV). Since we suppose that only one variable is available for measurement (say, variable x ) and the

complete phase space is unknown, we can only reconstruct it. For this purpose, we use the method of delayed coordinates

based on the Takens Embedding Theorem [35] . The reconstructed phase spaces of the amplitude and phase fluctuations near

the onset of phase synchronization are shown in Fig. 1 . 

One can see that while the reconstructed phase space of the amplitude difference exhibits characteristic structure, the

phase difference drifts like a random walk. This means that the phase dynamics has much better stochastic properties

than the amplitude dynamics. The stochastic properties of the phase fluctuation can be promising for chaotic cryptography

[36] and secure communication using chaotic systems [37,38] . 

The analysis of the probability distribution of the first return time of the phase of a chaotic oscillator suggested that

fluctuations of the chaotic phases of the intrinsic rotations about these uniform rotations behave as a fractional Brownian

random process [39] . The similarity of the phase difference fluctuation to Brownian motion was also noted in coupled

chaotic oscillators [34] ; however, stochastic properties of this deterministic motion were not investigated, nor was its their

dependence on the coupling strength. 

In this paper we are interested in the following questions: What are stochastic properties of the phase difference between

coupled chaotic oscillators? and How do they depend on the coupling strength? In order to answer these questions, we an-

alyze time series generated by coupled chaotic oscillators in the vicinity of phase synchronization using modern methods

of statistical and nonlinear analyses, to reveal particular scaling relations for phase dynamics. If the phase difference fluc-

tuation exhibits stochastic properties, another important question arises: Is it possible to distinguish determinism in this

motion from time series? 

To identify the type of the behavior, we analyze the time series of the phase difference using three different techniques.

These are a method based on the scaling law of the Fourier spectrum [40] , the detrended fluctuation analysis (DFA) [41] ,

and the detection of forbidden ordinal patterns [42] . We show that the first two methods do not allow one to distinguish

determinism in the phase drift and propose an approach based on the detection of forbidden ordinal patterns in the time

series, that can do it. First, we test the last method with deterministic Brownian motion and apply it to the system of

coupled chaotic oscillators. Apart from its fundamental interest, this problem is of crucial importance for the analysis of

experimental data when the underlying mechanism of experimentally observed fluctuations is unknown, especially in the

presence of intrinsic noise inevitable in real systems. 

The detection of determinism in time series data is important not only for understanding the data origin, but also for

building predictive models of the system. In his book, Abarbanel [43] describes different methods of nonlinear analysis of

chaotic time series. He emphasizes that standard tools of stochastic analysis, such as Fourier analysis, do not allow one to

distinguish determinism in time series. To characterize chaotic motion, he proposes the methods of nonlinear analysis, such

as phase-space reconstruction, fractal dimension, Lyapunov exponents, etc. However, even these methods do not guarantee

that we reveal determinism in phase fluctuations. In our paper, we show that only the method of forbidden patterns with

large embedding dimension can help in this situation, but it requires very long time series. 

The rest of the paper is organized as follows. In Sec. II we explain how recurring and forbidden patterns can be identified

in time series and used to detect determinism. In Sec. III we calculate forbidden ordinal patterns in stochastic and deter-

ministic Brownian motions to detect determinism. Then, in Sec. IV we consider the model of coupled Rössler oscillators and

apply Fourier analysis, detrended fluctuation analysis, and the method for the detection of forbidden ordinal patterns. We

also study the robustness of the last method to noise. Finally, the main conclusions are given in Sec. V. 

2. Identifying determinism in time series data 

Discriminating between deterministic and stochastic dynamics is an important problem in time series analysis. Tests

for determinism can be very helpful when trying to distinguish deterministic chaotic behavior from stochastic dynamics.
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One such test developed by Kaplan and Glass [2] which uses an embedding of the time series, and tracks the so-called

image of a point. In deterministic systems, nearby points will have nearby images. Other tests involve fitting models to time

series [44] , the use of permutation slopes [45] , and looking for repeated patterns in symbol spectra [46] , just to name a

few. The method used here will focus on finding so-called forbidden patterns in the time series. The method is fast, easy to

interpret, and easy to implement on a large number of series. Furthermore, it benefits from the advantages of the Bandt-

Pompe (BP) methodology of symbolization [47] , as discussed below. 

Identifying patterns in a time series can be difficult because there can be a large number of different values in the series.

In order to establish patterns, a time series needs to symbolized. In other words, the elements of the time series need to

be replaced by a limited number of symbols, called an alphabet . The simplest symbolization is a threshold-based binary

symbolization where a threshold value is chosen and elements greater (less) than the threshold are reassigned the value 1

(0). Time series elements equal to the threshold can be assigned either 0 or 1. It can be difficult [48] to choose a value of

the threshold such that the resulting binary series captures all of the dynamics of the original series. 

To avoid some of those difficulties, Bandt and Pompe [47] developed a dynamics difference-based symbolization method

that avoids using a threshold and is robust to noise. Furthermore, symbol distribution resulting from the BP methodology is

invariant with respect to nonlinear monotonous transformations and copes well with nonstationarities. The BP methodology

groups elements of the time series together in a fashion similar to phase space reconstruction methods. The method is as

follows. The time series { x 1 , x 2 , . . . , x n } is partitioned into embedding vectors { x i , x i + τ , . . . x i +(d−1) τ } , where, similar to phase

space reconstruction, d and τ are called embedding dimension and embedding delay , respectively. Each d -dimensional vector

is mapped to a permutation of the set { 1 , 2 , . . . , d} based on the ranking of each element in the vector. The permutations

are called ordinal patterns . For example, the vector {8, 7, 15, 12} can be mapped to the ordinal pattern {2, 1, 4, 3} because

x 2 < x 1 < x 4 < x 3 . In the case of two or more equal elements, elements are sorted by their index such that {11, 13, 11, 15}

maps to the ordinal pattern {1, 3, 2, 4}. For simplicity, each ordinal pattern can be labeled with an integer called an ordinal

pattern index . The exact mapping from ordinal pattern to ordinal pattern doesn’t matter as long as the mapping is consistent.

For example, we could map the ordinal pattern {1, 2, 34} to the ordinal pattern index, 1. Likewise, we could map {2, 1, 4, 3}

to the ordinal pattern index 8. The resulting symbolized series would then consist of a list of ordinal pattern indices with

an alphabet length of d !. 

As opposed to choosing a threshold, the BP methodology requires a choice of two parameters, τ and d . There is no

prescribed method of choosing τ . For example, similar to creating embedding vectors for phase space reconstruction, τ
can be chosen to be the first zero of the autocorrelation function or the first local minimum of the mutual information.

In addition, τ can be chosen to match a time scale of interest in the time series. In this paper, we follow the work done

in [46] and choose τ = 1 , which was used there to successfully identify stochasticity in series which produced false positives

in other tests for determinism. The choice of d will be discussed later. 

The BP methodology can be used to detect deterministic dynamics in a time series. As mentioned previously, determin-

istic series will have certain ordinal patterns that occur often and other ordinal patterns that do not occur at all. The latter

patterns are called forbidden patterns and correspond to states inaccessible to the deterministic system. Stochastic time se-

ries, on the other hand, will not have forbidden patterns because all states are accessible if measurements are made for a

long enough period of time. Since the time series of a deterministic system has forbidden patterns [42,49] , the number of

forbidden patterns (NFP) can be used as a measure of the system determinism. 

In order to identify recurring and forbidden patterns in time series, the permutation spectrum test (PST) can be used [46] .

The PST is capable of detecting determinism in correlated random systems which are incorrectly identified as deterministic

by other tests. Furthermore, the PST can recognize determinism in systems which have been falsely identified as stochastic

by other tests. In this paper, we use a modified version of the PST which focuses only on the identification of forbidden

patterns in the series. The measure of only the NFP can be useful in cases where one is analyzing multiple time series and

working with permutation spectra can be cumbersome. The identification of forbidden patterns is done by symbolizing the

entire series into ordinal patterns and counting how many of the d ! ordinal patterns do not appear in the time series. 

In order to identify forbidden patterns in a series of length, N , the embedding dimension, d , must be carefully chosen

such that d ! � N . If too large a value of d is chosen, then there simply may not be enough data to sample all possible d !

ordinal patterns in the series. The patterns not detected in the series may only be missing and not forbidden. Hence, if d is

too large for the series, then a stochastic series may be falsely identified as deterministic. 

In this paper, the value of d is chosen using the following method. An ensemble of pseudo random time series is pro-

duced with a length, N , the same length of the series for which we are interested in detecting determinism. Each series of

the pseudo random ensemble is then symbolized using the Bandt–Pompe methodology for a given value of d . The number

of missing patterns (NMP), ordinal patterns not appearing in the series, is computed for each series in the ensemble. The

value of d chosen for analysis is the largest d that produces a zero NMP for all elements of the ensemble, providing us

evidence that the patterns missing from the series are forbidden and are not missing due to small sample effects. Following

this methodology, we will refer to the ordinal patterns not appearing a series as forbidden and not missing. Of course, a

value of d such that most, but not all, of the series in the ensemble produce NMP = 0 could be chosen, In such a case, the

percentage of series with NMP = 0 could serve as a confidence interval for the analysis. In this paper, we will use time se-

ries long enough such that any patterns missing from the series are most likely forbidden and therefore will equate missing

patterns with forbidden ones. 
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The choice of using the largest value of d producing NFP = 0 for all members of the ensemble is made with the hope

that d is large enough to capture the dynamics of the series. Just as choosing too large a value of d can lead to small sample

effects and a false positive for determinism, it has been the authors’ experience that choosing too small of a value for d can

lead to a false rejection of determinism in the data. In other words, one may obtain NFP = 0 for small values of d . This is

believed to be due to the embedding dimension being too small to accurately capture the dynamics, similar to using too

small of a dimension in phase space reconstruction. 

The random series in the ensemble can be generated using a probability distribution function similar to that of the series

of interest. For example, in the next section, the systems of interest are known to behave similar to Wiener processes, and

hence, Wiener processes with mean zero and unit variance are used to produce the random ensemble. For systems with

unknown underlying dynamics, surrogate series which preserve various properties (one of the most common being the

power spectrum) of the original series can be generated [50] for the ensemble. 

In the next sections, we will apply the method of forbidden ordinal patterns first to both the stochastic and deterministic

Brownian motions and then to the phase difference between two coupled chaotic Rössler oscillators. 

3. Analysis of stochastic and deterministic Brownian motions 

In order to demonstrate the ability of the BP approach to effectively detect determinism in time series, we compute the

number of forbidden ordinal patterns (NFP) for deterministic and stochastic Brownian motions. The deterministic Brownian

motion (DBM) was generated using the approach proposed in Ref [7] ., where the DBM generator based on the Langevin

equation with additional degree of freedom was proposed as follows 

˙ x = y, 

˙ y = −γ y + z, 

˙ z = −α1 x − α2 y − α3 z + α4 , 

(3) 

where x, y, z are variables and α1, 2, 3 are constants. The first two equations are derived from the Langevin equation [51] with

a little change: the stochastic term is replaced by the deterministic term z . The third equation in Eq. (3) is the rate of a

change in acceleration known as jerk [52] derived in the same spirit as those introduced by Campos-Cantón et al. [53] .

Finally, α4 is defined as 

α4 = C 1 ∗ Round (x/C 2 ) , (4) 

where C 1 = 0 . 9 and C 2 = 0 . 6 are constants which determine the system equilibrium and the function Round(K) rounds K to

a nearest integer less than or equal to K . 

The time series analysis showed that DBM exhibited typical characteristics of stochastic Brownian motion (SBM), namely,

a linear growth of the mean square displacement and an approximately -2 power law of the frequency spectrum [13] .

Furthermore, an approximately 3/2 power law scaling of the fluctuation function versus segmented lengths was obtained

by DFA [41] , and confirmed a Brownian character of the observed motion. Thus, the previous results showed that the main

characteristics of DBM did not represent a subtle difference from traditional SBM. 

Here, we are interested in whether or not the BP methodology can distinguish determinism in DBM. Fig. 2 shows the

results of finding the number of forbidden patterns (NFP) as a function of embedding dimension d for multiple time series

generated from SBM and DBM systems. The vertical axis of Fig. 2 is scaled by dividing NFP by d !, the maximum number of

possible ordinal patterns when an embedding dimension of d is used. As was mentioned previously, NFP = 0 means that
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there are no forbidden patterns in the series, i.e. the series is stochastic, whereas a nonzero NFP implies the presence of

determinism. 

Fig. 2 was produced using two ensembles of data, one generated from a SBM system and the other from the DBM system.

The SBM series were generated using Mathematica ’s Wiener Process command. Each ensemble consists of 50 series that are

131 072 elements long. Each series in each ensemble was symbolized using the BP methodology for a given value of d and

the NFP for each series was found. The ensemble mean and standard deviation of the NFP was then calculated. In many

cases, the error bars in Fig. 2 are smaller than the plot markers representing the mean. 

The first result obtained from Fig. 2 is that for d = 3 , the DBM ensemble produces NFP = 0. This is an example of

the aforementioned false rejection of determinism when too small of an embedding dimension is used. Notice that as d

increases, the number of forbidden patterns for d ≥ 4 increases. At first glance, it would appear that determinism can be

detected in the DBM system using a value of d as large as 8. However, inspection of the SBM results shows that it is not the

case and illustrates the second result. The second result of Fig. 2 displays small sample effects for our systems. For the SBM

system, the equality NFP = 0 fulfills for d ≤ 6. Although it is difficult to see due to the scale of Fig. 2 , the mean NFP/ d ! is 0.04

for d = 7 , i.e. there are approximately an average of 201 forbidden patterns in each SBM series when d = 7 . The nonzero

value of the NFP in the SBM ensemble implies that 131 072 elements are not enough to reliably detect stochasticity in the

system 100% of the time. When analyzing the DBM system with the same length using d ≥ 7, we need to keep in mind that

there is a low chance of falsely detecting determinism. The possibility of a false detection of determinism in these series

increases 10 times with d = 8 , as the NFP/ d ! for the SBM in the case of d = 8 is approximately 0.4. Hence, at least some

of the patterns in the DBM series identified as forbidden in our analysis are, in fact, missing due to small sample effects

when d ≥ 7 is used. Notice that for d = 7 and d = 8 it appears that the NFP/ d ! for the DBM system approaches one, but is

not equal to one. For these two embedding dimensions there are very few patterns that occur in series compared to the

number of possible patterns (which is large). 

The actual value of the NFP for the DBM system in Fig. 1 for 4 ≤ d ≤ 6 is not necessarily important. The analysis of time

series generated from discrete maps has shown that periodic systems tend to have more forbidden patterns than chaotic

series [46] . However, in continuous systems this does not necessarily hold true because the number of forbidden patterns

depends on the sampling time for the series [54] . Hence, although tempting, one should not identify high values of NFP as

a stronger measure of determinism than lower values of NFP. A purely deterministic system with a few forbidden patterns

can have the same NFP value as a system with a large NFP value, but also has noise. That said, for a given system, the

NFP of the series should decrease as noise levels increase. Thus, the presence of forbidden patterns is enough to identify

determinism. 

4. Phase fluctuation in coupled chaotic Rössler oscillators 

To generate the time series of the phase difference between coupled chaotic oscillators, we use the model of two unidi-

rectionally coupled Rössler oscillators given as 

˙ x m 

= −y m 

− z m 

, 

˙ y m 

= x m 

+ ay m 

, 

˙ z m 

= b + z m 

(x m 

− c) , 

˙ x s = −y s − z s , 

˙ y s = x s + ay s + σ (y m 

− y s ) , 

˙ z s = b + z s (x s − c) , 

(5)

where the subindices m and s refer to the drive (master) and response (slave) oscillators, respectively, and σ is the coupling

strength varied between 10 −4 and 10 −2 with a step of 10 −4 . The parameters a = 0 . 165 , b = 0 . 2 , and c = 10 used in this work

provide chaotic oscillations. 

The numerical simulations of Eq. (5) are carried out using the fourth-order Runge–Kutta algorithm of MATLAB with a 0.1

integration step size. In this paper, we analyze the time series of 5.5 × 10 5 data points. We compare the time series of the

drive and response oscillators and calculate the phase difference by Eq. (2) . The time series of δφ for two different values

of the coupling strength are shown in Figs. 3 (a) and 3 (c). The difference between these two time series is notable. While

for a very weak coupling δφ gradually increases in time ( Fig. 3 (a)), for a stronger coupling the phase difference fluctuates,

during a relatively long time, around zero within the range from −π to π radians, and then suddenly switches to 2 π rad

( Fig. 3 (c)). Such a well-known phase flip behavior occurs very rarely when the system is close to the transition point to

phase synchronization [55] . 

The phase drift in Figs. 3 (a) and 3 (c) can be characterized by the mean square displacement (MSD), i.e., the deviation

over the whole time series duration T , between the phase difference δφ and its time-averaged value 〈 δφ〉 T , defined as 

MSD (t) = 

〈
[ δφ(t) − 〈 δφ〉 T ] 2 

〉
, (6)

One can see from Fig. 3 (d) that MSD displays a linear dependence in time, MSD = 2 Dt, which is the typical feature of the

Brownian motion, where D is the diffusion coefficient. This result, first obtained by Einstein, is related to Stokes’ law [56,57] .
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Fig. 3. Time series of (a-c) phase difference between two coupled chaotic Rössler oscillators Eq. 1 for coupling (a,b) σ = 0 . 001 and (c) σ = 0 . 005 , and (d) 

MSD calculated by Eq. (2) for σ = 0 . 005 and T = 551590 . The time series in (b) is an enlarged part of that in (a). 
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Fig. 4. Mean phase difference 〈 δφ〉 (dots) and standard deviation of phase difference SD( δφ) (squares) as a function of coupling. 

 

 

 

 

 

The diffusion analysis is out of the scope of this paper (for interested readers we recommend Refs [58–60] .). For sufficiently

long time series, the average phase difference 〈 δφ〉 T does not depend on T , and therefore MSD is only a function of time t . 

Phase synchronization can also be characterized by the mean phase difference 〈 δφ〉 and the standard deviation of the

phase difference SD( δφ) from the mean [14] . Fig. 4 shows how these values depend on the coupling strength. One can

clearly distinguish two different regions in these dependencies. In the first region, for very weak coupling ( σ < 0.004), both

〈 δφ〉 and SD( δφ) depend on the coupling and reach maxima at σ ≈ 0.001 as σ is increased, whereas in the second region,

for stronger coupling ( σ > 0.004) they are close to zero and independent of the coupling. 
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Fig. 5. Power spectra of phase difference δφ for (a) σ = 0 . 001 and (b) σ = 0 . 005 , exhibiting α = −1 . 984 ± 0 . 0 01 and α = −1 . 10 0 ± 0 . 003 power laws 

(green lines), typical for a Brownian motion and pink noise, respectively. The blue line in (b) shows the -2 slope for reference. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Fourier analysis 

In order to better understand the dynamics of the phase drift, we take the Fourier transform of the δφ time series and

analyze the power spectrum S ( ω) 

S(ω) ∼ ω 

α, (7)

on a log-log scale by linear approximation for searching scaling exponent α. 

The power spectra of the phase drift δφ for two different values of the coupling strengths, σ = 0 . 001 and (b) σ = 0 . 005 ,

are shown respectively in Figs. 5 (a) and (b). These spectra are approximated by linear dependencies with scaling exponents

α ≈ −2 and α ≈ −1 obtained by the least squares method. The −2 scaling exponent is typical for the Brownian motion

found in the experiments of Gaspard et al. [13] with colloidal particles. In our case, this scaling fits the spectrum very well

for very small coupling (0.0 0 01 < σ < 0.0023), whereas for a little stronger coupling (0.0023 < σ < 0.01) the phase drift is

approximated by the −1 scaling exponent, typical for pink noise. In Fig. 5 (b) we also plot for reference a −2 slope (blue

line). One can see that the -1 slope is more convincing in the high frequency range, while for low frequencies the slope is

closer to −2. 

4.2. Detrended fluctuation analysis (DFA) 

Stochastic properties of a system can be revealed by analyzing its self-affinity, i.e. self-similarity of fractal objects ob-

tained by their rescaling in the x - and y -directions using an anisotropic affine transformation [61] . The statistical self-affinity

can be determined using the method of detrended fluctuation analysis (DFA) [62] which allows quantitative characterization

of long-time correlation of non-stationary signals. 

The DFA method works as follows. The bounded time series δφ( t ) of T samples is first integrated or summarized into an

unbounded process �( k ) known as cumulative sum or profile : 

�(k ) = 

k ∑ 

t=1 

[
δφ(t) − 〈 δφ(t) 〉 ], (8)

where 〈 δφ( t ) 〉 is the average phase difference over time T . This integration process converts the phase drift into a random

walk, i.e. maps the original time series to a self-similar process. To measure the vertical characteristic scale of the integrated

time series we divide �( k ) into N = T /n time windows �n of equal length n and in each window we fit the data by a least

squares straight line which represents the local trend of the window. The y coordinate of the trends is denoted as �n ( k ). For

a given window size n , the characteristic size of fluctuation for this integrated and detrended time series is calculated as 

F (n ) = 

( 

1 

T 

T ∑ 

k =1 

[(
�(k ) − �n (k ) 

)2 
]) 2 

. (9)

This computation is repeated over all time scales to provide a relationship between F ( n ) and the box size n . A linear depen-

dence in the log-log graph indicates the presence of scaling (self-similarity), i.e., the fluctuations in small boxes are related

to the fluctuations in larger boxes as the power law 

F (n ) ∼ n 

β . (10)
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Fig. 6. Characteristic size of the phase difference fluctuation versus the box size for coupling (a) σ = 0 . 001 and (b) σ = 0 . 005 . The straight lines represent 

linear fits with scaling exponents 1.65 ± 0.05 and 1.00 ± 0.04, typical for a Brownian motion and pink noise, respectively. 
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The scaling exponent β (self-similarity parameter) is calculated as the slope of a straight line fit to the log-log graph of F ( n )

against n using least-squares. This exponent is a generalization of the Hurst exponent. When the exponent is about or larger

than 1, three different random behaviors can be distinguished. 

For β ∼ 1, DFA defines 1/ f or pink noise. 

For β > 1, DFA defines a non-stationary unbounded behavior. 

For β ∼ 3/2, DFA defines a Brownian motion. 

Fig. 6 displays the results of the DFA analysis of the time series shown in Fig. 3 (c,d). One can see that for weak coupling

the phase drift behaves as a Brownian motion with the scaling exponent close to 3/2, whereas for stronger coupling the

phase difference has a pink noise property with β = 1 . 

Both the Fourier analysis and DFA show that the phase difference of weakly coupled chaotic oscillators behaves as a

Brownian motion. This can be seen from Fig. 7 , where we plot the scaling exponents α and β versus the coupling strength.

These exponents are obtained by two different methods, spectral density I ( ω) and DFA, respectively. Indeed, for very small

coupling ( σ < 2 . 3 × 10 −3 ) the phase drift has the properties of Brownian motion with α ≈ −2 and β ≈ 3/2. However, for

stronger coupling, the type of the behavior is different. When σ is increased, α increases and β decreases, approaching

α ≈ −1 and β ≈ 1, so that the behavior becomes more correlated. For β ≈ 1, the DFA defines 1/ f or pink noise. 

4.3. Method of forbidden patterns 

In this section we apply the method of forbidden patterns to the time series analyzed above in order to see if determin-

ism can be detected. In addition, we test the BP method for its robustness to noise. In other words, do forbidden patterns

persist in the series even when noise is present? If so, how much noise is needed to have zero missing patterns, i.e., all

possible ordinal patterns appear in the series? 
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In order to study the robustness of the BP method to noise, we add noise to both the drive and the response Rössler

oscillators, as follows 

˙ x m 

= −y m 

− z m 

, 

˙ y m 

= x m 

+ ay m 

+ ξm 

w m 

, 

˙ z m 

= b + z m 

(x m 

− c) , 

˙ x s = −y s − z s , 

˙ y s = x s + ay s + σ (y m 

− y s ) + ξs w s , 

˙ z s = b + z s (x s − c) . 

(11)

Here, w m 

and w s are a pair of independent normally distributed random variables with zero expectation and 0.1 variance

(equal to the integration step), generated using the Box-Müller transform as 

w m 

= 

√ 

−2 log (u 1 ) cos (2 πu 2 ) , 

w s = 

√ 

−2 log (u 2 ) sin (2 πu 1 ) , 
(12)

where u 1 and u 2 are a pair of independent random numbers uniformly distributed in the interval (0, 1), and ξm 

and ξ s

are the noise intensities. The Box-Müller transformation is one of the most popular methods for generating pseudo-random

samples from a normal distribution [63] . The detailed explanation of this method can be found in Ref [64] . For simplicity,

we suppose that the drive and response oscillators are subject to noise with the same intensity, i.e., ξm 

= ξs = ξ ∈ [0 , 1] . In

our calculations, we use the Matlab code published in Ref [65] . The noise is applied at each Runge-Kutta integration step. 

In Fig. 8 (a) we plot the number of forbidden patterns found in the time series of the phase difference for different

coupling strengths between the Rössler oscillators Eq. (11) in the absence (upper trace) and in the presence of noise with

different intensities (lower traces). We study fewer couplings for the noisy cases because of the computational expense

involved in generating the noisy series. As seen in Fig. 8 (a), the NFP appears to be independent of coupling strength for

0 ≤σ < 0.01. However, as the noise increases, we see that the NFP generally decreases, as expected. The value of NFP/ d !,

averaged over the range of coupling strengths from 0 to 0.01, is plotted in Fig. 8 (b) as a function of the noise intensity ξ .

Eventually, as ξ exceeds 0.4, almost zero forbidden patterns are found, again demonstrating that at these coupling strengths

and noise levels, the NFP tends to decrease with noise level. Here, we use the embedding dimension d = 6 . To test if there

are enough data points in each time series to reliably use this value of d , an ensemble of 10 0 0 pseudo-random series, each

with a length of 140 0 0 0 elements, is created from a uniform distribution, and the NFP of each series is computed. We found

that all of the uniform random time series have zero number of forbidden patterns (NFP = 0). In addition, we performed

a similar test using a fractional Gaussian noise (fGn) process with a Hurst exponent of H = 0 . 9 , in order to see if 140 0 0 0

elements are enough to detect randomness in a highly correlated time series. Of the 10 0 0 fGn series tested, all of them

had NFP = 0. Hence, we can be confident in the detection of determinism in the Rössler system even in the presence of

relatively strong noise. 

5. Conclusion 

Using ordinary methods of stochastic analysis, we have characterized the phase difference between coupled chaotic oscil-

lators in the vicinity of phase synchronization. Our results indicate that the phase drift exhibits stochastic properties which
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depend of the coupling strength. While near the onset of phase synchronization the phase difference behaves as a Brownian

motion with the scaling exponent in its power spectrum close to -2, for stronger coupling the phase difference obeys a -1

power law, typical for pink noise. The traditional methods of stochastic analysis, such as Fourier and detrended fluctuation

analyses, were not able to distinguish determinism in the time series of the phase difference for a very weak coupling.

Only the detection of forbidden ordinal patterns using the Bandt–Pompe methodology revealed determinism in the phase

fluctuations. The forbidden patterns test has also been applied to find the difference between stochastic and determinis-

tic Brownian behaviors. Due to its robustness to noise, the method of forbidden patterns can be used for the analysis of

experimental data to reveal determinism in noisy time series. 

To distinguish determinism in phase fluctuations, a large embedding dimension ( d ≥ 7) should be used, that requires very

long time series. This property is very promising for designing a pseudo random number generator to be used in chaotic

cryptography and secure communication, where information can be encoded with relatively short time series. 

Although in this work we explored a classical example of coupled chaotic Rössler oscillators frequently used for studying

phase synchronization, we believe that similar results can be obtained in other systems. The significant contribution of our

paper is that the identification of missing patterns in the series is able to detect determinism for phase fluctuations, when

other methods fail to do so. 
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