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Abstract

The behavior of bistable dynamical systems subjected
to additional noise is studied both analytically and nu-
merically. We show that such systems can demonstrate
noise-induced intermittency characterized by exponen-
tial law distributions of the residence time. The main
results are illustrated with the examples of the bistable
energy model, erbium-doped fiber laser and mutually
coupled Lorenz oscillators near the boundary of gener-
alized synchronization.
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1 Introduction

Intermittency is an ubiquitous phenomenon in non-
linear science [Berge et al., 1984]. It is observed in
different systems including the physical, physiologi-
cal and biological ones (see, e.g., [Kim et al., 1998;
Perez Velazquez and et al., 1999; Kiss and Hudson,
2001; Boccaletti et al., 2002; Cabrera and Milton,
2002; Hramov et al., 2006b; Sitnikova et al., 2012]).
It manifests itself as alternation of the episodes of pe-
riodic and chaotic regimes [Manneville and Pomeau,
1979] or different forms of the chaotic motion [Gre-
bogi et al., 1987]. It can also be observed near the
boundaries of different synchronous regimes demon-
strating the interchange of the phases of synchronous
and asynchronous behaviors (see, e.g. [Pikovsky et al.,
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1997; Boccaletti and Valladares, 2000; Hramov and
Koronovskii, 2005; Hramov et al., 2006a; Moskalenko
et al., 2011; Hramov et al., 2014]).

Among different types of the intermittent behavior,
one can traditionally distinguish type I-III [Berge et al.,
1984; Dubois et al., 1983], on-off [Heagy et al., 1994],
eyelet [Pikovsky et al., 1997; Boccaletti et al., 2002]
and ring [Hramov et al., 2006a] intermittencies and the
coexistence of two or more types [Hramov et al., 2013;
Moskalenko et al., 2014; Koronovskii et al., 2016].
Each type of intermittency mentioned above is char-
acterized by its proper mechanism and own statistical
characteristics. One can say that such characteristics
allow the unambiguous definition of the type of inter-
mittency realized in the system.

Recently the concept of intermittency has been ex-
tended to multistable systems. In such case the alter-
nation between coexisting periodic or chaotic regimes
regardless of the form of motion realized in the systems
can also be observed [Pisarchik et al., 2012; Sevilla-
Escoboza et al., 2015]. At that, the switches between
coexisting regimes can be induced by noise. There-
fore, the system under study demonstrates the so-called
noise-induced intermittency or noise-induced attractor
hopping [Arecchi et al., 1985; Wiesenfeld and Hadley,
1989; Kraut and Feudel, 2002; Pisarchik et al., 2011;
Hramov et al., 2016].

Despite of a great interest to the problem of noise-
induced intermittency (see, e.g. [Lai and Grebogi,
1995; Pisarchik and Pinto-Robledo, 2002; Hramov
et al., 2016]) there is a number of questions demand-
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ing consideration and discussion. One of such prob-
lems consists in the fact that there is no appropriate
theory allowing to obtain the characteristics of noised-
induced intermittency even in the case of two different
coexisting regime. In the present paper, we propose the
theory of noise-induced intermittency in bistable dy-
namical systems. We will show that the residence time
distributions for every coexisting regime obeys the ex-
ponential law.

2 Theory of Noised-induced Intermittency

A standard bistable system capable to demonstrate
noised-induced intermittency can be described by the
bistable energy model:

dz dU (x)

o= e, M

where £(t) is zero mean d-correlated Gaussian noise
[{&n) = 0, (£ném) = DI(n — m)], D is its variance,

xt 22

U(z) = 1 5 + bz 2)
is the dimensionless energy function with two local
minima, and b is the parameter of symmetry [Pisarchik
et al., 2014; Moreno-Bote et al., 2007].

The differential Eq. (1) with stochastic term £(t) re-
sults in the stochastic differential equation:

dU (x)

X:
d dx

dt + dw, 3)

where X () is a stochastic process and W () is a one-
dimensional Winner process. Equation (3) is equivalent
to the Fokker-Plank equation:

apx(1’7t) _ 2
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written for probability density p(x, t) of the stochastic
process X (t).

Since in the regime of intermittency the coordinate of
the system state stays for a long time in the vicinity of
one of the local minima, we can assume that the solu-
tion of Eq. (4) should be searched in the form of the
metastable distribution decaying slowly for a long pe-
riod of time, i.e.

pla,t) = A(t)r(z), (5)

where r(z) is the stationary probability density ob-
tained from the solution of Eq. (4) in a stationary case
and A(t) is a coefficient decreasing slowly as the time
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increases. Equation (5) results in the following relation
for the residence time distributions for both coexisting
regimes:

1 t
)= —exp [ ——— ). 6
p1,2(t) s exp( T1,2> (6)
Here
P
Ty =t
1,2 Fr(a®)’ @)

x* is a boundary point located at equal distances from
two local minima of U (x), P o are the probabilities of
location of the representation point in the vicinity of the
first or second local minima, and k is a normalization
factor.

In other words, in the regime of noise-induced inter-
mittency the residence time distributions obey the ex-
ponential law Eq. (6).

3 Numerical Verifications of the Proposed Theory

To confirm the results of theoretical predictions, we
analyze numerically the behavior of two different sys-
tems capable to demonstrate the regime of noise-
induced intermittency. As the first example, we con-
sider the same energy model Eq. (1) with the same po-
tential function Eq. (2) and characteristics of noise with
its variance D = 0.1. In Fig. 1 the time realization (a)
and statistical distributions (b,c) of the residence times
corresponding to two coexisting regimes in symmetri-
cal case (b = 0) are shown. The graph in Fig. 1,b cor-
responds to the first coexisting regime (marked by / in
Fig. 1,a), i.e. the first local minimum of the potential
function, whereas Fig. 1,c refers to the second coexist-
ing state (marked by 2 in Fig. 1,a). The results of the
numerical simulations are marked by symbols for both
coexisting regimes and theoretical approximated by the
exponential laws Eq. (6) (solid lines) with the parame-
ters indicated in the figure caption. It is clearly seen the
excellent agreement between the results of the numer-
ical calculations and theoretical approximations. This
confirms the validity of the proposed theory.

As the second example, we consider dynamics of an
erbium-doped fiber laser which is known to demon-
strate noised-induced intermittency [Pisarchik et al.,
2005; Hramov et al., 2016]. The system under study
is given by

de 2L

& =T {rwao [y (&1 — &) — 1] — aun} + Psyf8)
dy 0127w T T

-V = -1)—-— P, umps

dt 71'1"% W& ) T + Fpump

where « is the intracavity laser power,
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Figure 1. Time realization (@) and residence time distributions
(b, c) for two coexisting regimes in bistable energy model Eq. (1) for
b = 0. The results of numerical calculations are marked by sym-
bols. Theoretical approximations by the regularity Eq. (6) are shown
by solid lines. The parameters of approximations are (b) T1 = 722
and (¢) Ty = 721.

1

L
yf—/]\fg(z)dz is the averaged (over the
noL

active ﬁbé)r length L) population of the upper las-
ing level, Ny is the upper level population at the
z coordinate, ng is the refractive index of a “cold”
erbium-doped fiber core, & and & are parameters
defined by the relationship between cross sections
of ground state absorption (oi2), return stimulated
transition (o21), and exited state absorption (o23). 1)
is the photon intracavity round-trip time, «q is the
small-signal absorption of the erbium fiber at the laser
wavelength, oy, accounts for the intracavity losses on
the threshold, 7 is the lifetime of erbium ions in the
excited state, 7 is the fiber core radius, wy is the radius
of the fundamental fiber mode, and r,, is the factor
that conveys the match between the laser fundamental
mode and erbium-doped core volumes inside the active
fiber. The spontaneous emission into the fundamental
laser mode is derived as

1073 /2, \? r2aoL
Py =y Lo) 00~ ©)
7T, \wgy /) 4m?01s

where ), is the laser wavelength. The pump power is
expressed as

1 —exp[—apfL(1—1y)]

Pum =P )
pump P No’/T’I"(z)L

(10)

where P, is the pump power at the fiber entrance and
B is a dimensionless coefficient. Similar to previous
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Figure 2. Time realization (@) and residence time distributions
(b, ¢) for two coexisting regimes b — A1 ), c — A3 )
in erbium-doped fiber laser Eq. (8) for noise intensity = 0.11
(symbols) and their analytical approximations by regularity Eq. (6)

(solid lines). The parameters of approximations are (b) 17 =

31x107%and ()T, = 3.9 x 10~*.

works, the parameters are chosen as follows: L = 0.88
m, T, = 8.7ns, r, = 0.308, p = 40 m~ 1, & = 2,
& = 04, oy, = 3.92 x 1072, 019 = 2.3 x 1077
m?, rg = 2.7x107%m, 7 = 107%s, A\, = 1.65 x
1075 m, wg = 3.5 x 107 m, B = 0.5, and Ny =
5.4 x 10%® m~3. These parameters correspond to real
experimental conditions.

Under the harmonic and random modulations

Pp =P []- —mgq sin (27det) + WG(C» fn)} s (11)

where p is the pump power, mg = 0.95 and f; =
80 kHz are the driving frequency and amplitude, re-
spectively, 7 is the noise amplitude, and G((, f,)
is the zero-mean noise function of a random num-
ber ¢ € [—1,1] and noise low-pass cut-off frequency
fn = 30 kHz), the system Eq. (8) demonstrates
noised-induced intermittency with up to four coexist-
ing regimes A; (i = 1,3,4,5) with frequencies f; =
fa/i [Pisarchik et al., 2012; Hramov et al., 2016].

If the noise intensity 7 is small enough, Eq. (8) ex-
hibits the coexistence of two different regimes (see
Fig. 2,a) that allows us to apply the theory proposed in
Sec. 2 to the system under study. In Fig. 2,b,c the nu-
merically obtained distributions of the residence times
corresponding to the regimes A; (I) and Az (I11) for
the value of the noise intensity 7 = 0.11 and their the-
oretical approximations by the regularities Eq. (6) are
presented. A good agreement between the theoretical
and numerical results are clearly seen for both consid-
ered regimes. Therefore, we can conclude that for a
small noise intensity the residence time distributions
corresponding to two coexisting regimes in erbium-
doped fiber laser obey the exponential law.
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Figure 3. Distributions of laminar phase lengths for two mutually
coupled Lorenz systems Eq. (12) being in the regime of intermittent
generalized synchronization for different values of the coupling pa-
rameter (symbols) and their analytical approximations by regularity
Eq. (6) (straight lines) for (1) ¢ = 5.8 and T7 = 18357, (2)
€ =>5.5andT]; = 11519,and(3) e = 5.0and T} = 5612.

4 Intermittent Generalized Synchronization

Let us now apply the proposed theory to the analy-
sis of intermittent generalized synchronization in two
mutually coupled Lorenz systems [Zheng et al., 2002;
Moskalenko et al., 2012] with two coexisting chaotic
attractors. The system under study is described as

10 =012 — 21,2) +e(T21 — 1,2),
Y1,2 =T1,2T1,2 —¥Y1,2 — T1,2%21,2, (12)
21,2 = —bz10 + 1,201 2,

where (21 2,91,2, 21 2)T are the state vectors of the in-
teracting systems, o = 10.0, b = 8/3, r1 = 40.0 and
ro = 35.0 are the control parameters, and ¢ is the cou-
pling strength.

In our previous papers [Koronovskii et al., 2011;
Moskalenko et al., 2012] we have shown that the on-
set of generalized synchronization in mutually coupled
dynamical systems is connected with a sign change in
the second initially positive Lyapunov exponent. This
occurs in the system Eq. (12) for ¢ > egg = 5.9.
Bellow the boundary of generalized synchronization,
the intermittent behavior is observed as the presence of
short-term time intervals with the divergence of phase
trajectories on the different chaotic attractor sheets,
whereas most of time the phase trajectories of interact-
ing systems are almost completely synchronized (see
Fig. 5 in [Moskalenko et al., 2012] for details). The
trajectory divergence corresponds to turbulent phases,
whereas the time intervals of the synchronous behav-
ior are called by laminar phases in complete agreement
with the theory of intermittency.

Thus, the appearance of intermittency near the bound-
ary of chaotic generalized synchronization is con-
nected with the jumps of representation points from
one chaotic sheet to another, similar to the behavior of
a bistable dynamical system in the presence of noise.
Therefore, one can assume that the theory of noised-
induced intermittency proposed in Sec. 2 can be ap-
plied to the system Eq. (12).
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In order to verify the made assumption, we analyze
the main statistical characteristics of the laminar phase
lengths, i.e. the distributions of the laminar phase
lengths for the fixed values of the control parameters,
and compare them with the theoretical prediction Eq.
(6). Due to the symmetry of the chaotic attractors
of these two interacting systems, we have not distin-
guished the moments of time corresponding to the pres-
ence of representation points on the left and right shifts
of the chaotic attractors and calculated only one dis-
tribution for fixed parameter values. The numerically
obtained distributions of the laminar phase lengths for
different values of the coupling parameter € in mutu-
ally coupled Lorenz systems Eq. (12) are presented in
Fig. 3 by symbols. Their theoretical approximations
by the regularity Eq. (6) are shown by solid lines (the
parameters of approximation are given in the caption).
It is clearly seen the excellent agreement between the
numerically obtained data and the results of theoretical
predictions.

Thus, the results obtained with the coupled Lorenz os-
cillators confirm that the theory of noise-induced inter-
mittency can also be applied for characterization of the
intermittent behavior near the onset of generalized syn-
chronization.

5 Conclusion

In the present paper, the theory of noise-induced inter-
mittency in bistable dynamical systems has been pro-
posed. We have shown that the residence time distribu-
tions for every coexisting regime obey the exponential
law. The main results have been illustrated using the
examples of the bistable energy model, erbium-doped
fiber laser and coupled chaotic Lorenz oscillators.
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