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Abstract—This paper presents an analysis of data from a
neurophysiological experiment involving various cognitive tasks.
The study conducted a statistical analysis of wave rhythm
stability and correlated it with average reaction time. The findings
confirmed the validity of a previously identified biomarker based
on the variance of wavelet energy in EEG signals, demonstrating
its effectiveness in reflecting attentional characteristics. This
research enhances our understanding of the relationship between
wave rhythms and cognitive performance, thereby contributing
to the assessment of cognitive load.

Index Terms—EEG, neurophysiological experiment, cognitive
testing, brain wave rhythms

I. INTRODUCTION

Assessing the effectiveness of learning is a crucial aspect
of education and pedagogy. Various methods and approaches
are employed to evaluate the extent to which learners have
achieved their goals and to measure their progress in acquiring
knowledge and skills.

One of the most common methods used to assess learning
effectiveness is testing the knowledge and skills acquired
through completing assignments on covered topics. Addi-
tionally, methods for analyzing students’ personal qualities
are employed to evaluate the effectiveness of learning [1],
[2]. However, these approaches have several limitations, with
standardization being the primary constraint.

In the pursuit of more personalized methods for assessing
cognitive characteristics, attention has shifted towards analyz-
ing brain activity. The dynamics of brain activity in different
sensory areas can provide significant insights into the cognitive
abilities of the brain [3]-[8]. This analysis is implemented
through the use of an electroencephalogram (EEG) [9]-[12].

One of the advantages of EEG is its ability to provide real-
time feedback [13]. For instance, it can determine whether a
trainee is in a state of focus or distraction, enabling training
to be tailored to enhance concentration.
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Furthermore, EEG can be employed to measure the emo-
tional response to learning. It can detect the level of stress or
engagement during the learning process.

When analyzing EEG signals, researchers typically distin-
guish periodic oscillations in various frequency ranges known
as wave rhythms. These wave rhythms are specific patterns
of electrical activity that reflect the collective dynamics of
neurons in the brain. Changes in the amplitude and frequency
of these wave rhythms can indicate different states of the brain.

Energy changes within different wave rhythms are fre-
quently utilized as biomarkers in the development of brain-
computer interfaces [14]-[16]. These energy changes facilitate
the analysis and extraction of information regarding brain
states and activity.

The current study builds upon the previous work by [17] and
aims to investigate the proposed biomarker within the context
of various cognitive load types.

II. METHODS

A neurophysiological experiment was conducted to assess
elementary cognitive functions and the simultaneous utiliza-
tion of these functions in a task. A group of 24 children, aged
9-10 years and without any health issues, participated in the
study. The experiment comprised three parts, each consisting
of six blocks of tasks presented in a random order: one
for visual search, one for working memory, one for mental
arithmetic, and three for a combination of these functions.

The focus of this study was on a visual search task im-
plemented in the form of a Schulte table, where participants
were required to locate a specific two-digit number among 25
numbers shown in advance.

A 64-channel EEG was recorded using electrodes placed
according to the international 10-10 system. The EEG signals
were sampled at a frequency of 500 Hz. A 50 Hz notch filter
was applied to the signals to eliminate noise from the power
grids.

The stability of the wave rhythms was calculated as follows.
Firstly, each of the three task blocks was divided into ten
equal time intervals with a precision of 1 ms. An additional
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2-second duration was added to both ends of these intervals
to compensate for any edge effects.

Next, the wavelet surface was computed using the formulas
described in [17]. The wavelet transform was performed
separately within four frequency ranges: 1-4 Hz (delta), 4-8
Hz (theta), 8-14 Hz (alpha), and 14-30 Hz (beta).

The resulting surfaces were then averaged across time and
frequency. However, to avoid edge effects, 1000 data points
(equivalent to 2 seconds) were excluded from both ends of the
time series, which were added during the previous step.

From the frequency-time wavelet spectrum, the frequency-
averaged energies within standard ranges were calculated.
To determine their dispersion, the following approach was
employed: each task block was divided into ten equal time
segments, and the dispersions between these ten values were
separately calculated for each wave rhythm.

To conduct a variance analysis of repeated measurements,
the data underwent pre-processing in the form of a z-score
procedure to reduce inter-individual variability. The resulting
values were then correlated with the average response time.
Spearman’s correlations were used to examine the relationship
among individuals within the first block of tasks. To analyze
the experiment’s dynamics and explore relationships between
blocks, the method of repeated correlations was employed.
The electroencephalogram data from each channel were tested
independently of each other.

ITI. RESULTS

The analysis of variance of repeated measurements revealed
statistically significant differences between channels across all
frequency ranges. Additionally, significant differences were
observed between blocks in the alpha and beta ranges, as well
as interference between blocks in the theta range.

Subsequently, we conducted repeated correlation analyses to
examine the relationship between response time and channel
variance. In the alpha range, correlations were observed in
channels FC4, Fz, and O2. In the beta range, correlations were
identified in channels Fz, FC1, Pz, Cz, FC2, and P5. In the
delta range, correlations were detected in channels F2, FC2,
PO8, and PO4. In the theta range, correlations were found in
channels FC2 and Fz.

Furthermore, Spearman correlation analysis was performed
for the first block of tasks to explore the relationship between
channel variance and mean response time. In the alpha range,
correlations were observed in 24 channels, and Figure 1
depicts a topographic map illustrating these correlations. In
the beta range, correlations were found in channels F7, TP9,
and FT7. In the delta range, a correlation was detected in the
Pz channel. In the theta range, correlations were observed in
channels F3, TP10, Cz, and F1.

IV. CONCLUSIONS

This study discovered a correlation between the stability
of alpha-range brain activity in the temporal lobes during a
visual search task and the mean response time. This finding
suggests that the stability of alpha rhythms could serve as

Fig. 1. Topographic map illustrating correlations between average response
time and energy variance of alpha rhythms during the visual search task.

a biomarker for predicting cognitive decline based on wave
rhythm dynamics. Furthermore, the study examined the real-
time dynamics of this biomarker during the experiment, indi-
cating its potential utility for immediate assessment.
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