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Using Reservoir Computing to Predict a Macroscopic Signal
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Abstract—The authors study the ability of reservoir computing to predict a complex macroscopic signal with
chaotic dynamics. To improve the efficiency of prediction, the phase space of the signal is reconstructed by
adding delays. Characteristics of predictions and the parametric space of reservoir are studied, depending on
the number of delays.
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INTRODUCTION
The application of radiophysics, nonlinear dynam-

ics, and artificial intelligence to problems of neuro-
physiology is an important trend in modern science
[1–5].

Complex systems are characterized by multiple
interacting spatial and temporal scales that challenge
classical numerical means in predicting and con-
trolling their dynamics. In real life, we are faced with
problems of predicting dynamics of different nature,
e.g., weather, climate [6], medicine [7], and neurosci-
ence [8]. Recurrent neural networks (RNNs) offer a
potential way of solving these problems. The most
promising RNN for solving such a problem is reservoir
computing.

Reservoir computing has been successfully used to
predict the chaotic dynamics of Lorentz, Ressler, and
Kuramoto–Sivashinsky systems [9–11]. The authors
of [11] showed that a neural network with reservoir
computing is also capable of modeling the dynamics of
such systems. With reservoir computing, the network
is trained to reproduce the functional dependence of
the system, but since chaoticity is characterized by the
divergence of trajectories that differ even slightly
under initial conditions, the real and predicted trajec-
tories diverge over time, but the phase patterns of both
trajectories remain similar.

We investigated the possibility of predicting a mac-
roscopic signal with chaotic dynamics using such a
recurrent neural network as a reservoir. A signal aver-
aged over a network of 100 Kuramoto phase oscillators
with adaptive coupling was taken as the initial signal.
To improve the efficiency of predicting the dynamics
of such a signal, we restored the phase space of the sig-
nal by adding phase delays and investigated the effect

the number of delays had on the reservoir efficiency. It
was found an excessive growing number of delays
intended to restore the original signal did not appre-
ciably alter the prediction of the signal.

MODEL
A model system is a network of 100 Kuramoto

phase oscillators, each of which is described by the
equation [12]

(1)

where  { } is a set of random natural fre-
quencies with uniform distribution in the range
[−π, π],  is the strength of the coupling between
the ith and jth elements. The sum of the couplings of
each oscillator with all other oscillators is 1.

The strength of coupling changes over time
according to the adaptive law

(2)

(3)

where  is the average phase correlation between i-
th and jth oscillators from time  to t, with

 being the characteristic period of memory.
Equation (2) describes the process of homophily,
while the condition of a constant coupling sum for
each oscillator is a property of homeostasis. This
model thus describes the dynamics of an adaptive net-
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Fig. 1. (a) Model of a recurrent neural network using reservoir computing. In training, an input signal is fed to the input layer of
the network, and the connections between the reservoir and the output layer are modified to produce the desired signal at the
output layer. (b) In testing, the output of the network is fed to its input layer.
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work of oscillators with competition between homeo-
stasis and homophily.

The structure of the recurrent neural network using
reservoir computing is shown in Fig. 1. The network
has an input layer, a hidden layer (reservoir) and an
output layer. The number of neurons in the input and
output layers is equal to the number of input signals.
Each neuron in the hidden layer is described by the
equation

(4)

where ht is the vector of neuronal states in the reservoir
at time t; Wi,h is the matrix of connections between the
input and hidden layers, with the strengths of connec-
tions being randomly distributed in the range
[−δin, δin]; Wh,h is a matrix of connections between
neurons of the hidden layer that forms randomly with
specified values of average node degree D and spectral
radius R; and It is the vector of input neuron states at
time t (the state of an input neuron is equal to the
external signal applied to it). The neurons of the out-
put layer are described by the equation

(5)

where ot is the vector of neuronal states in the output
layer at time t, and Wo,h is the matrix of connections
between the hidden and output layers.

The number of neurons in the reservoir is set at
1000. At the beginning, all connections between the
reservoir and the output layer are 0. The connections
between the input layer and the reservoir are uniformly
distributed so that each neuron in the reservoir is con-
nected to only one input neuron, and the number of
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connections of all input neurons is approximately
equal. There are no connections within the input and
output layers.

During the learning process (Fig. 1a), input signals
are successively fed to the input layer. Each of signal
changes the output links to produce the target value.
In predictions, the output value corresponds to the
exact value of the input signal following the one pre-
sented at a given iteration; i.e., the output signal is the
input signal shifted 1 step forward.

In the learning process (Fig. 1b), the initial value of
the signal is fed to the input of the network. The output
value of the neural network is then fed to the input,
starting from the first iteration. The network thus
becomes closed, allowing it to autonomously generate
a signal based on its knowledge of the initial signal and
functional dependence obtained while learning.

RESULTS AND DISCUSSION
We investigated the possibility of predicting the

macroscopic dynamics of a network of No = 100 Kur-
amoto phase oscillators with adaptive links using res-
ervoir computing. The chosen size of the network is
due to the ability of this number of oscillators to obtain
a complex chaotic macroscopic signal. The signal
averaged over the entire Kuramoto oscillator network
is used as the macroscopic signal. The initial macro-
scopic signal had duration T = 10000 s with time step
Δt = 0.1 s. It was calculated as

(6)
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Fig. 2. Timeline of original and predicted signals: (a) when 3 signals (original + 2 delays) are input to the network; (b) with nor-
malized root-mean-square errors NRMSE for different numbers of input signals N.

Original

0 12.5 25.0 37.5 50.0 62.5

N
R

M
S

E

10�3

10�2

10�1

100
(b)

(a)

T �1

�0.8

�0.4

0

0.4

Xavr

N
1
2
3
4
5
6
7
8
9

Predicted
This signal was divided into two equal parts of
5000 s duration each: the first part of the signal was
used during network training, while the second part
was used during testing.

To study the characteristics of the macroscopic sig-
nal, the highest Lyapunov exponent on the time reali-
zation is calculated according to the procedure

described in [13]. Point is chosen on the resulting

initial time. Point  is found close by at

 but not close in time to point . Two

time series are considered until distance  between

two points in these series  and ) exceeds some εmax.

At this point, time T1 between points  and  and

ratio  are recorded, point  is chosen close to 

at distance  and the algorithm is

repeated. As a result, the highest Lyapunov exponent

is calculated as 

where K is the number of algorithm repetitions.

The calculated highest Lyapunov exponent was

, which testifies to the chaotic dynamics of

the considered signal (because ). For conve-
nience in analyzing the dynamics of the signal, we

used Lyapunov time, calculated as .
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It was found that the use of such a signal without
applying additional means does not allow to train the
reservoir to predict its dynamics. To improve the effi-
ciency of predicting the dynamics, the dimensionality
of the phase space of the original signal was estimated
according to the false nearest neighbor [14]. It was
restored using a time delay by adding additional signals
shifted relative to the original one by 4.5 s [13] to
increase the number of original signals related to each
other.

It was calculated that the dimensionality of the
phase space for the considered macroscopic signal
was 2.8, so the phase space was restored to dimension-
ality 3. It should be noted that raising the number of
oscillators will increase the complexity of the macro-
scopic signal dynamics and probably the dimensional-
ity of the phase space as well. This would require more
delays for effective prediction. On the other hand, cal-
culating the macroscopic signal over a smaller number
of oscillators is impractical. Figure 2a shows a predic-
tion obtained using the reconstructed phase space. As
can be seen, this approach allows the signal to be pre-
dicted quite accurately within 50 Lyapunov times. The
reservoir reproduces all phases of the signal quite well,
with only one small error in the accuracy of reproduc-
ing the amplitude of oscillation.

The effect the number of delays had on the reser-
voir’s performance was investigated next. The normal-
: PHYSICS  Vol. 87  No. 10  2023
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Fig. 3. (a) Dependence of the fraction of points in parameter space (D, R, δin), with correlation between the original and predicted
signals greater than r, on r for different numbers of input signals N; (b) values of these fractions when r = 0.8.
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ized RMS error between the original and predicted
signals was calculated as

(7)

where o is the original signal,  is the predicted signal,
and σ

ο
 is the standard deviation.

Figure 2b shows the dependences of normalized
root-mean-square errors (NRMSEs) on Lapunov
time for different numbers of input signals. We can see
the NRMSEs first grow rapidly, reach the stationary
level set for each number of input signals, and then
grow slowly over time. It is noteworthy that the NRM-
SEs for one and two input signals are considerably
greater than the other number of signals converging to
similar values over time.

We may conclude that adding two delays to the res-
ervoir input greatly improves the quality of predicting,
while adding more signals barely alters it. To investi-
gate what happens when the number of delays is raised
from 2 to 8, we analyzed the parameter space (average
node degree D, spectral radius R, input correlation
scaling factor δin) and calculated the fraction of points

with correlation exceeding certain value r:

(8)

where  is the number of points with correlation
exceeding r; r is the Pearson correlation between the
original and predicted signals time interval from 0 to

75 ; and  is the total number of points in the
parameter space.

Figure 3a shows dependences ρ obtained for differ-
ent numbers of input signals. It is obvious that the
dependences for N = 1 and 2 behave differently from
the others: they first change weakly as r falls. They
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begin to grow rapidly when r = 0.8, and the rapid
growth is replaced by a slow increase at r = 0.5. The
dependences obtained for any other number of input
signals (3 or more) display different behavior: they
immediately begin to grow rapidly as the correlation
falls, but rapid growth is followed by a slow increase at
r = 0.9.

It is also noteworthy that the number of points in
the parameter space with high correlation r falls as the
number of input signals rises. This is illustrated in
Fig. 3b, which shows dependence ρ of on the number
of input signals when r = 0.8. The low ρ values for N =
1 and 2 are due to the low correlation that can occur
with such N values, and to the poor performance in
predicting.

It is clear that raising the number of input signals
from 3 to 9 has virtually no effect on the number of
optimal points in the parameter space with high cor-
relation (Fig. 3b). We may assume this was due to the
dimensionality of the phase space of the original sig-
nal. Adding two delays to the reservoir input fully
restored the phase space. The structure of the signals
was complete and predictable for the reservoir. Raising
the number of signals thus does not add any unknown
information that can be useful for predicting.

CONCLUSIONS

We investigated the possibility of using such a
recurrent neural network for reservoir computing to
predict a macroscopic signal with chaotic dynamics.
The latter was modeled with a signal averaged over
100 Kuramoto phase oscillators coupled by adaptive
links.

It was shown that effective prediction requires the
phase space of the original signal to be reconstructed
by adding delays to it. We investigated the effect the
number of delays has on the reservoir efficiency. It was
found that raising the number of delays more than is
Y OF SCIENCES: PHYSICS  Vol. 87  No. 10  2023
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needed to reconstruct the original signal does appre-
ciably alter either the accuracy of prediction or the
number of optimal reservoir parameters at which a
good correlation between the original and predicted
signals can be obtained.
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