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ABSTRACT

The competition of homophily and homeostasis mechanisms taking place in the multilayer network where several
layers of connection topologies are simultaneously present as well as the interaction between layers is considered.
We have shown that the competition of homophily and homeostasis leads in such networks to the formation of
synchronous patterns within the different layers of the network, which may be both the distinct and identical.

Keywords: multiplex networks, homophily, homeostasis, Kuramoto oscillators, synchronization, cluster forma-
tion

1. INTRODUCTION

Coupled biological and chemical systems, social groups and interacting animal species, the Internet and the
World Wide Web, the brain and the stock markets are just a few examples of systems composed of a huge
number of highly interconnected dynamical components. The modern approach to capture the global properties
of such systems is to model them as graphs,1–3 where nodes represent the basic units, and links stand for
the interactions between them, forming a specific connectivity pattern which defines the so-called network’s
topology. Despite their intrinsic differences, a set of surprising common properties (such as a power law scaling
in the network connectivity and a modularity structure observed at the mesoscopic scale) has been revealed
in real-world network (RWN) structures.4 The spontaneous emergence, as a self organization process, of these
topological features has been explained recently5,6 as the direct consequence of structure-dynamics adaptation
principles involving the competition between two basic mechanisms. The first one (well established in sociology
and neuroscience under the terms of homophily 7 and Hebbian learning, respectively) corresponds to the trend
of reinforcing those interactions with other correlated units in the graph. The second (which preserves the value

Further author information: (Send correspondence to Vladimir V. Makarov)
V. V. Makarov: E-mail: vladmak404@gmail.com, Telephone: +7 8452 51 42 94

Dynamics and Fluctuations in Biomedical Photonics XIII, edited by Valery V. Tuchin, 
Kirill V. Larin, Martin J. Leahy, Ruikang K. Wang, Proc. of SPIE Vol. 9707, 970711 

© 2016 SPIE · CCC code: 1605-7422/16/$18 · doi: 10.1117/12.2207392

Proc. of SPIE Vol. 9707  970711-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/19/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



of the input strength received by each unit) results from the limitation in the associative capacity, and is known
to play a relevant role in neuroscience under the term homeostasis ,8 while in social systems it is related to the
so called Dunbar’s number.9

Only in the last years, and taking advantage of an enhanced resolution in real data sets, the interest switched
to properly frame the multilayer character of RWNs, by considering them as networks made, in fact, of diverse
relationships (layers) between its constituents.10 In this Report we show that competition between homophily
and homeostasis actually leads to self-organization of ensembles of oscillators into a multilayer network structure.

2. MODEL

We consider an ensemble of N oscillators, where each oscillator i (i = 1, ..., N) has it’s eigenfrequency ωi, and
described by a vector of M components φl

i (l = 1, ...,M) corresponding to it’s time dependent phase in each of
the M layers of the network on which it interacts with the rest of the ensemble. Here, a Kuramoto-like evolution
for the phase φl

i(t) on each layer l = 1, ...,M, is assumed. Also, each oscillator interacts with itself within it’s

phase vector ~φi, that presents the interaction between layers. The resulting evolution of the phase vectors is
given by

φ̇l
i(t) = ωi + λ1

∑

j 6=i

wl
ij(t) sin(φl

j − φl
i) + λ2

∑

j 6=l

sin(φj
i − φl

i). (1)

Here, {ωi} is a set of randomly assigned natural frequencies distributed uniformly in [−π, π] (note that the
natural frequency ωi of i-th oscillator is the same for all M layers of the network), λ1 and λ2 are the intra-layer
and inter-layer coupling strengths, respectively. Finally, wl

ij(t) is the weight of the connection between elements
i and j on layer l (whose time evolution will be momentarily described). On each layer l, for each oscillator i

and at each time t, the set {wl
ij} satisfies the condition

N
∑

j 6=i

wl
ij = 1. (2)

In other words, we consider the case for which, in Eq. (2), the value of the input strength received by each unit
within each layer is a constant.

In parallel with the node dynamics (1), the weights of the links are also evolving through dynamical equations
that reflect competition mechanisms between homophily and homeostasis.5,6 The adaptive evolution of the
weights wl

ij is governed by

ẇl
ij(t) = pl

ij(t) −





∑

k 6=i

pl
ik(t)



 wl
ij(t), (3)

where the time dependent quantity pl
ij(t) is defined as

pl
ij(t) =

1

T

∣

∣
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ei(φl
i(t

′)−φl
j(t

′))dt′
∣

∣

∣

∣

. (4)

Notice that pl
ij denotes, at time t, the average phase correlation (within layer l) between oscillators i and j over

a characteristic memory time T . It follows from Eq. (3) that the normalization condition (2) holds at all times,
i.e., the sum of the weights of all incoming connections at each node within each layer is conserved.

The case of a monoplex (M = 1) was extensively studied in Refs. ,5,6 both numerically and analytically,
and it was shown that a large region exists in the parameter space (σ1, T ) where, starting from random initial
conditions for the weights w1

ij and from random initial phases φ1
i in interval [−π, π], Eqs. (1,3) asymptotically

lead to the spontaneous accommodation of the ensemble into a cluster-synchronized regime.

As we are, instead, focused to investigate the emergence of a multilayer network structure, in the following
we will fix T = 100, and concentrate on the analysis of the solution of Eqs. (1,3) for N = 100 oscillators and
M = 10 layers of connections, as a function of inter-layer coupling parameter λ2.
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Figure 1. Global (grey line) and intra-layer (black line) order parameter for different values of inter-layer coupling strength:
(a) σ2 = 0.012 and (b) σ2 = 0.012. Intra-layer coupling parameter is σ1 = 1. The insets shows the evolution of δ value
(see definition in text).

3. RESULTS

Here, we are interested in possibility to observe the multilayer structure as a result of adaptive interactions
via homophily and homeostasis. To detect it we compare the classical time-dependent order parameter, r(t),
reflecting the global phase coherence used in5 with the phase coherence inside each layer of our model, averaged
over all system:

rlayers(t) =
1

M
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∣
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. (5)

Here, the value of r(t) lower then rlayers(t) will reflect the incoherence between the same node in different layers,
that, by turn, will stand for the presence of the multilayer structure.

This comparison is shown in the Fig. 1 for two different values of inter-layer coupling strength σ2 = 0.02
(Fig.1(a)) and σ2 = 0.012 (Fig.1(b)). The value of σ1 is chosen according to the study of the monoplex system.5,6

Firstly, for t < 0 we integrate numerically the equation (1) in a homogeniuos network, where nodes are connected
all-to-all with randomly assigned weights, which are constant in time, and the condition (2) satisfied. Then, for
t ≥ 0 we considered the full dynamics of the adaptive model by switching on the weight evolution presented by
equation (3). To detect that the weights become constant and the structure has reached the steady state we

calculate the quantity δ = 1
M

∑M

l

√

∑

i,j [W
l
ij(t) − W l

ij(t − 1)]2, which is depicted in insets of the figures. This

value is decreasing before t ≈ 500, then becomes almost constant and have magnitude 10−3 − 10−5, that is small
enough to consider the weights are not changing and structure is stationary.

Then the weights are constant in time (t < 0) the dynamics is similar in both cases: the values of r(t) and
rlayers are equal to each other, and their magnitude is about 0.1, i.e. the system acts like 1-layer random network.
Then the adaptation is turned ON (t = 0) via the equation (3), the magnitude of both order parameters increases
dramatically. Furthermore, at t ≈ 100 the crucial difference appears between case (a) and (b). Considering the
case (a), one can see the values of r(t) and rlayers(t) remain equal until the structure of the network has reached
the steady state. In contrast, in case (b) the global order parameter, r(t), departs from intra-layer order,
rlayers(t), and becomes sufficiently lower.
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Figure 2. Values of second lowest eigenvector of the first (solid line), second (dotted line) and third (dashed line) layer
sorted by it’s magnitude. Plot (a) presents evaluation of the model while σ2 = 0.012 and (b) corresponds to σ2 = 0.012.
Intra-layer coupling parameter is σ1 = 1. The inset in plot (b) reflects the visualization of the difference matrix between
first and second layer, while σ2 = 0.012.

To study this effect in detail we investigate the structure of the network using the second smallest eigenvectors
of layer matrixes, also called Fiedler vectors,11 associated with algebraic connectivity11 of corresponding nodes.
To catch the partition inside each layer, we sort the values of corresponding Fiedler vector according to it’s
magnitude. For clear representation only three layers are depicted in Fig. 2. Then σ2 = 0.02 (Fig.2(a)) one can
see the stair-like curves, where each level represent itself the strongly coupled community. Five levels can be
observed on each curve, moreover, the curves are almost identical and the levels are completely overlap. The
latter reflects the same community structure within layers.

The structure becomes more complex, while we decrease the inter-layer coupling strength, plotted in Fig. 2(b).
Most of communities still identical at all layers, in particular, the one with highest connectivity. However, there is
a considerable non-overlapping region (marked by grey) between second and first (or third by reason of similarity)
layer. Namely, one community has merged with it’s neighbors within second layer in contrast with other layers,
that has led to emergence of multilayer structure.

To gain deeper insight in topology we calculate the absolute difference matrix between first and second layer
as wd

ij = |w1
ij − w2

ij |. This matrix was visualized with help of Gephi,12 OpenOrd layout and shown in Fig. 2(a).

For the sake of simplicity we neglect the weights lower than 10−3. The picture reflects two strongly-coupled
communities. Here, links between clusters represent themselves the vanished connections between nodes of the
community that has merged with it’s neighbors in the second layer. In turn, links inside depicted clusters stand
for connections, that are missed in the first layer.

4. CONCLUSIONS

In conclusion, we have considered the competition of homophily and homeostasis processes in the multiplex net-
work. We have shown that the competition of homophily and homeostasis results in the formation of synchronous
patterns which may be both the distinct and identical within the different layers of the complex network.
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