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ABSTRACT

We investigate the dynamics of the networks of 100 identical bistable Hodgkin-Huxley neurons with scale-free,
small-world and random topologies. For all of them, we discover a phenomenon when one part of the neurons
are in the resting state, while the other one is in the oscillatory regime in a certain area of coupling strength
and external current amplitude. We investigate this phenomenon and explain it by neuron interaction similar to
the short pulse of external current which is able to switch the neuron regime from resting to oscillatory one and
vice versa. We find the differences on this phenomenon for different topologies and investigate the evolution of
it with increasing of external current.
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1. INTRODUCTION

The dynamics of complex networks has attracted much attention in recent years.1–6 Especially, the networks of
spiking neurons or neuron-like elements take a significant part of this area.7–11 The interest in neural networks
is due it helps to make a contribution to a better understanding of brain functionality, that also is of a grate
interest.12–19 The most famous mathematical models of neurons are Hodgkin-Huxley (HH),20 FitzHugh–Nagumo
(FN),21 and Hindmarsh-Rose (HR)22 ones. In our research, we use HH neuron due to its most realistic behavior
and biological inspiration.

The coexistence of different brain states is should also be taken into account while studying neuron dynam-
ics.23 Switches between such coexisting states play an important role in cell signaling and neuronal interac-
tions.24–26 Typically, each cell receives inputs from thousands of cells mediated by many different neurotrans-
mitters and consequently modifying the postsynaptic potential by excitation or inhibition.27 Communication
between cells takes place at synaptic contacts, where an arriving action potential releases a neurotransmitter,
thus affecting the postsynaptic potential of the target cell. It is believed28 that the coexisting dynamical regimes
mimic different brain states representing particular objects of perception which can be selected by giving the
neural network an input corresponding to an initial condition.29–31 Furthermore, the coexistence of multiple
states in the brain has been proposed as a basic mechanism for associative content-addressable memory storage
and pattern recognition in neural systems.28,32,33

Collective dynamics in a neuronal network is usually considered by taking into account that every neuron in
the network is monostable, i.e., it has a single stable trajectory.34 However, according to Keener and Sneyd,35

the Hodgkin-Huxley (HH) model exhibits bistability in a narrow range of control parameters near the excitation
threshold. The bistability regime in oscillatory systems as known to be of special interest due to a variety of
hidden unexpected phenomena. In particular, Nekorkin et al.36,37 found theoretically and experimentally both
amplitude and phase chimeras in the network of electronic oscillators constructed on the base of a generic self-
excited bistable model. Concerning neuronal models, it is worth mentioning the recent work of Uzuntarla et al.,38

who uncovered a counterintuitive effect in the neuronal network of bistable HH neurons, where a spiking behavior
transformed into a steady state under excitatory coupling. We suppose the origin of this lies in the coexistence of
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spiking and silent neural populations in the neuronal network, which can be referred to as a chimera state. Such
kind of chimeras may shed light on the unihemispheric brain slow-wave sleep in mammalians and birds.39,40 The
dynamics of the network of bistable HH neurons were recently studied by Esir et al.,41 who highlighted the role
of coupling delays and noise in formation of up and down states in the neuronal network.

We investigate the dynamics of the networks of 100 identical Hodgkin-Huxley neurons in a multistable area
where both stable fixed point and stable limit circle coexist. We discover a phenomenon when one part of the
neurons are in the resting state, while the other one is in the oscillatory regime in a certain area of coupling
strength and external current amplitude.

2. NUMERICAL MODEL

We consider the network of N = 100 Hodgkin-Huxley neurons. The time evolution of the transmembrane
potential of the HH neurons is given by20

Cm
dVi
dt

= −gmaxNa m3
ihi(Vi − VNa) − gmaxK n4i (Vi − VK)−

− gmaxL (Vi − VL) + Iexi + Isyni

(1)

where Cm = 1µF/cm3 is the capacity of cell membrane, Iexi is an external bias current injected into a neuron in
the network, Vi is the membrane potential of i-th neuron, i = 1,...,N , gmaxNa = 120mS/cm2, gmaxK = 36mS/cm2

and gmaxL = 0.3mS/cm2 receptively denote the maximal sodium, potassium and leakage conductance when all
ion channels are open. VNa = 50mV , VK = −77mV and VL = −54.4mV are the reversal potentials for sodium,
potassium and leak channels respectively. m, n and h represent the mean ratios of the open gates of the specific
ion channels. n4 and m3h are the mean portions of the open potassium and sodium ion channels within a
membrane patch. The dynamics of gating variables (x = m,n, h) are given:

dxi
dt

= αxi
(Vi)(1 − xi) − βxi

(Vi)xi, x = m,n, h (2)

αx(V ) and βx(V ) are rate functions, described by42

αm(V ) =
0.1(25 − V )

exp[(25 − V )/10] − 1
(3)

βm(V ) = 4 exp(−V/18) (4)

αh(V ) = 0.07 exp(−V/20) (5)

βh(V ) =
1

1 + exp[(30 − V )/10]
(6)

αn(V ) =
0.01(10 − V )

exp[(10 − V )/10] − 1
(7)

βn(V ) = 0.125 exp(−V/80) (8)

Isyni is the total synaptic current received by neuron i. We consider coupling via chemical synapses. The
synaptic current takes the form43

Isyni =
∑

j∈neigh(i)

gcα(t− tj0)(Erev − Vi) (9)

where the alpha function α(t) describes the temporal evolution of the synaptic conductance, gc is the maximal
conductance of the synaptic channel and tj0 is the time at which presynaptic neuron j fires. We suppose α(t) =
e−t/τsynΘ(t), there Θ(t) is the Heaviside step function and τsyn = 3ms. The initial conditions of all neurons
correspond to the oscillatory basin of attraction of individual neuron.

Proc. of SPIE Vol. 11459  114590V-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 09 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



3. RESULTS

We investigate 3 different types of network topologies: scale-free, small-world, and random network. Scale-free
topology is a well-known and widely-used connectivity paradigm in computational studies of local microcircuits
since such connectivity has been observed in many functional brain regions via neuroimaging and electrophys-
iological studies.44,45 Along with the above, it was shown that many areas of the brain have small-world
properties.46,47

Scale-free topology was generated by Barabási–Albert algorithm.48 Small-world one was generated by Watts-
Strogatz algorithm49 for β = 0.3, K = 5. Random network was generated the same way as small-world one but
for β = 1.0.

As we investigate the dynamics of the network of neurons, we can expect that not only the external current
amplitude but also the coupling strength will control neural dynamics. In order to verify the truthfulness of
this statement, we analyze how the number of active neurons depends on both external current and coupling
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Figure 1. (a-c) Two-parametric dependencies of the oscillating neurons number in the network of N = 100 HH neurons
from coupling strength gc and external current Ie, dashed lines correspond to the area of the state when one part of
neurons is in oscillatory regime while another one is resting. (d-f) Time series of all neurons and averaged inter-spike
intervals (g-i) calculated for different topologies and parameters: (a,d,g) scale-free, (d,g) gc = 0.0175; (b,e,h) small-world,
(e,h) gc = 0.0275, (c,f,i) random topology, (f,i) gc = 0.0325. Ie = 7.4 for (d-i).
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Figure 2. (a-d) Scale-free topologies and (e-h) the corresponding distributions of the number of active (yellow) and silent
(blue) neurons M according to the neuron couplings number N for (a,e) Ie = 7.0, (b,f) Ie = 7.2, (c,g) Ie = 7.3, (d,h)
Ie = 7.4. Black nodes in the networks mean active neurons, white – the silent ones. i-th column on the diagrams (e-h)
means the number of neurons coupled to i or i + 1 other elements in the network. gc = 0.0175.

strength. By active neurons we mean the ones generating spikes. On figure 1(a-c) one can see the two-parametric
dependencies for corresponding topologies. Ie = 6.24 is the threshold value for a single neuron and for current
amplitudes lower that value a neuron can be only in a “silent” regime. That’s why for all topologies one can see
the area Ie < 6.24 for all values of coupling strength where all neurons in the network are inactive.

For Ie > 6.24 the number of active neurons depends on coupling strength. As one can see on Fig.1(a), there
is an area for 6.3 < Ie < 6.35 and 0.04 < gc < 0.1 where all elements of the network are active. For small-world
topology (b) this area is wider in current amplitude, but shorter in coupling strength. And for the random
network (c), it is mostly like for small-world but it’s wider for gc > 0.075.

One can see that for low external current amplitude there is a narrow coupling strength range when all
neurons in the network generate spikes. Increasing the external current leads to its expansion, and for big values
of it (for (a) it’s Ie > 7.8) the range corresponds to all coupling strength values we analyze. We should note
that the transition from “all neurons are active” to “all neurons are silent” regime is smooth, and there is an
area where only a part of network elements are active. That area is highlighted by the dashed line, and we can
call it the area of the chimera state because we have a part of spiking neurons and another part of resting ones.
For scale-free topology that transition is the sharpest and the area is the smallest. For small-world one (b) the
transition is smoother, and the dashed area is bigger and includes higher gc. Random topology is characterized
by the smoothest transition and the biggest chimera area.

It is easy to see that in Fig.1(a) the area when all neurons are in the resting state occupies most of the
considered parameter values, and moving from (a) to (c) one can see how this area decreases for gc > 0.4.

The situation when in a complex network one part of the elements is in the resting state while another one
generates spikes is of interest. And it is not so clear why the system behaves this way, because all connections
in the network are excitatory, and at the first blush excitatory synapses shouldn’t suppress neuron oscillations
and external current is above the threshold.

In order to figure it out, at first, we investigate the dynamics of all neurons in the system. Figs.1(d-f) illustrate
the time series of them after transient sorted by inter-spike interval (ISI) (g-i) for scale-free, small-world and
random topologies. ISI = 0 corresponds to the resting neurons. As one can see all elements have not only slightly
different inter-spike intervals, but also the phase delays relative to each other for both topologies. Even when
the external current value corresponds to oscillation dynamics but the steady-state coexists in the phase plane,
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a short external pulse is capable to switch the neuron dynamics to the resting one. And the excitatory synapses
are similar to the external pulses, so in turn, they can perform the same role. For sure they should come to the
neuron approximately at the same time to make the pulse amplitude is high enough, but as we can see in Fig.1,
many neurons are synchronized, so together they can switch the neuron dynamics to the resting one.

At second, we investigate how the external current influences the number of active neurons. The top row
(a-d) on Fig.2 illustrates which neurons are in the oscillatory regime (black) or in the resting one (white) for
different values of external current, but for one coupling strength. One can see that most neurons which are
already active stay at the oscillatory regime with increasing Ie while the new neurons start to oscillate. From the
node order distributions, one can see that the neurons with the lowest number of connections start to oscillate
first [5 and 6 for Fig.2(e)], while the rest of them are in the resting regime. With the increasing of external
current, the number of active neurons with the lowest order rapidly increases, and it slowly makes the neurons
with higher order start to oscillate too [7 and 8 for Fig.2(f,g)]. And for high external current (h), the most of
each group of neurons (each column in the distributions) oscillate, but not all of them. We should note that the
more neurons have the same number of connections, the more of them start to oscillate.

4. CONCLUSION

We have investigated the dynamics of the networks of 100 identical Hodgkin-Huxley neurons with 3 different
topologies: scale-free, small-world and a random one. We have discovered the existence of a specific state in such
networks in a certain area of coupling strength and external current amplitude, when one part of the neurons
are in the resting state, while the other one is in the oscillatory regime. We have investigated this phenomenon
and explained it by a neuron interaction similar to the short pulse of external current which is able to switch the
neuron regime from resting to oscillatory one and vice versa. So as all neurons in the network oscillate initially,
the dynamics of the neurons with a high number of input connections can be easily switched to the resting
one, while other ones having a small number of connections continue to generate spikes. We also show that for
scale-free topology the chimera state area is the smallest one when for the random topology the chimera state
takes the most area of the parameters.
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[16] Frolov, N., Maksimenko, V., Lüttjohann, A., Koronovskii, A., and Hramov, A., “Feed-forward artificial neu-
ral network provides data-driven inference of functional connectivity,” Chaos: An Interdisciplinary Journal
of Nonlinear Science 29(9), 091101 (2019).

[17] Kurkin, S., Chholak, P., Maksimenko, V., and Pisarchik, A., “Machine learning approaches for classification
of imaginary movement type by meg data for neurorehabilitation,” in [2019 3rd School on Dynamics of
Complex Networks and their Application in Intellectual Robotics (DCNAIR) ], 106–108, IEEE (2019).

[18] Chholak, P., Niso, G., Maksimenko, V. A., Kurkin, S. A., Frolov, N. S., Pitsik, E. N., Hramov, A. E., and
Pisarchik, A. N., “Visual and kinesthetic modes affect motor imagery classification in untrained subjects,”
Scientific reports 9(1), 1–12 (2019).

[19] Maksimenko, V., Badarin, A., Nedaivozov, V., Kirsanov, D., and Hramov, A., “Brain-computer interface
on the basis of eeg system encephalan,” in [Saratov Fall Meeting 2017: Laser Physics and Photonics XVIII;
and Computational Biophysics and Analysis of Biomedical Data IV ], 10717, 107171R, International Society
for Optics and Photonics (2018).

[20] Hodgkin, A. L. and Huxley, A. F., “A quantitative description of membrane current and its application to
conduction and excitation in nerve,” The Journal of physiology 117(4), 500–544 (1952).

[21] FitzHugh, R., “Impulses and physiological states in theoretical models of nerve membrane,” Biophysical
journal 1(6), 445–466 (1961).

[22] Hindmarsh, J. L. and Rose, R., “A model of neuronal bursting using three coupled first order differential
equations,” Proceedings of the Royal society of London. Series B. Biological sciences 221(1222), 87–102
(1984).

[23] Pisarchik, A. N. and Feudel, U., “Control of multistability,” Physics Reports 540(4), 167–218 (2014).

[24] Angeli, D., Ferrell, J. E., and Sontag, E. D., “Detection of multistability, bifurcations, and hysteresis in a
large class of biological positive-feedback systems,” Proceedings of the National Academy of Sciences 101(7),
1822–1827 (2004).

[25] Laurent, M. and Kellershohn, N., “Multistability: a major means of differentiation and evolution in biolog-
ical systems,” Trends in biochemical sciences 24(11), 418–422 (1999).

[26] Newman, J. P. and Butera, R. J., “Mechanism, dynamics, and biological existence of multistability in a
large class of bursting neurons,” Chaos: An Interdisciplinary Journal of Nonlinear Science 20(2), 023118
(2010).

[27] Slepchenko, B. M. and Terasaki, M., “Bio-switches: what makes them robust?,” Current opinion in genetics
& development 14(4), 428–434 (2004).

Proc. of SPIE Vol. 11459  114590V-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 09 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



[28] Canavier, C., Baxter, D., Clark, J., and Byrne, J., “Multiple modes of activity in a model neuron suggest
a novel mechanism for the effects of neuromodulators,” Journal of neurophysiology 72(2), 872–882 (1994).
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