
Using Brainwave Entropy to Evaluate Visual Search
Performance in School-Aged Children

Nikita Brusinskii
Baltic Center for Neurotechnology and Artificial Intelligence

Immanuel Kant Baltic Federal University
Kaliningrad, Russia
nikita@brusinskii.ru

Abstract—This paper analyzes data from a neurophysiological
experiment based on a visual search task. The study investigates
methods for predicting response time based on the entropy of the
energies of key brain rhythms, such as theta, alpha, and beta,
in different brain regions. The aim is to develop methods for
predicting task performance efficiency using neurophysiological
parameters.

Index Terms—EEG; Schulte table; wavelet analysis; machine
learning; entropy

I. INTRODUCTION

Visual information processing involves a wide range of
cortical structures in the brain, including sensory, associative,
and motor areas [1], [2]. These structures work together
to ensure the effective integration of sensory signals and
cognitive processes such as attention, perception, and memory
[3]. Therefore, studying brain activity is crucial for gaining
a deep understanding of the mechanisms underlying visual
information processing [4]. Research on neural activity in
these regions reveals the dynamics of interneuronal interac-
tions and functional connections, which, in turn, contributes
to understanding the key principles of cognitive architecture
that enable successful performance in visual tasks, even in
complex environments.

Various neurophysiological monitoring methods are used
to analyze these processes and other brain activity, includ-
ing near-infrared spectroscopy (NIRS) [5], eye-tracking [6],
electroencephalography (EEG) [7]–[11], magnetic resonance
imaging (MRI) [12], and other techniques. These methods
provide detailed insights into brain activity and its functional
organization, offering valuable data for studying cognitive pro-
cesses related to visual perception. For instance, multichannel
EEG can provide information about the functional connectivity
between different brain regions, which is particularly impor-
tant for analyzing network activity and distributed informa-
tion processing. Additionally, multimodal research approaches,
which combine multiple techniques such as EEG and fNIRS
[5], [6], [13], allow for a more comprehensive understanding
of how different brain networks interact and process sensory
information across various modalities, providing a richer pic-
ture of cognitive function.

One of the advantages of EEG is its ability to provide real-
time feedback. This allows its signals to be used for brain-
computer interface applications [8], [9].

Simultaneously, most basic research, although it provides
quite detailed information about the analysis of brain activity
during visual search tasks, does not answer how to predict the
performance of this kind of tasks.

The present study is a continuation of the [14] and aims
to explore ways of predicting response times using recurrent
wavelet energy measures of wavelet rhythms in a visual search
task.

II. METHODS

A neurophysiological experiment was conducted to test
elementary cognitive functions and the ability to use them
simultaneously in a task. A group of 52 children aged 8-12
years without health problems was recruited for the study.
Each of the three parts of the experiment consisted of the
following six blocks of tasks arranged in random order: one
on visual search, one on working memory, one on mental
arithmetic, and three on a combination of these functions. A
detailed description of the entire experiment is described in
[14].

The purpose of the study in this paper was a visual search
task realized in the form of a Schulte table, in which the
subject had to find a two-digit number shown to him in
advance among 25 numbers. Only the first block of this type
of task was considered in order to reduce the influence of such
factors as accumulated fatigue.

A 64-channel EEG was recorded using electrodes placed
according to the international scheme 10-10. The sampling
frequency of EEG signals during recording was 500 Hz. The
signals were filtered with a 50 Hz filter to exclude noise from
power grids. Energy of rhythms was calculated as follows.
First, the first block of visual search tasks was taken, to
which 2 seconds were added on both sides to compensate
for the influence of the edge phenomena region in the future.
After that, the wavelet surface was calculated based on the
formulas given in [10]. The wavelet transform was performed
in the alpha (8-14 Hz) and beta (14-30 Hz) bands. After
that, the obtained surfaces were averaged by frequency, but
to avoid edge effects, 1000 points (2 seconds) were excluded
from both ends of the time series, which were additionally
added in advance at the previous step. Frequency-averaged
energy values were calculated from the time-frequency wavelet
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spectrum. Based on these energies, entropy was calculated
according to the formulas specified in the [15].

The wavelet energy was calculated in Matlab using the
fieldtrip module [16].

The vertical entropies were calculated in Python using the
PyRQA module [15].

III. RESULTS

A correlation analysis was performed, showing a number
of correlations between behavioral and physiological charac-
teristics, namely between response times and energy entropy
values in the alpha (8-14 Hz) and beta (14-30 Hz) bands.

Channels in which significant correlations were found were
used as the basis for entropy-based response time predictions.

The performance of different machine learning methods,
namely Ordinary Least Squares regression, Lasso regression,
and Ridge regression, was compared.

Training was conducted using a cross-validation approach
with k-fold equal to 5.

The relative forecast deviation was taken as a performance
metric, calculated using the formula:

w =

∑52
i=1 | RT i

pred −RT i
real |∑52

i=1 RT i
· 100%

As a result, it was found that the linear regression method
shows the worst result (w = 27.4), while Lasso and Ridge
show comparable results (w = 14.5 and w = 14 respectively).

Fig. 1. Distribution of normalized deviation of predicted response time from
actual response time

Future plans are to investigate other machine learning
methods to determine the most effective one.

IV. CONCLUSION

Thus, the Lasso and Ridge methods were found to predict
response times based on entropy energies with reasonable ac-
curacy. This extends the ability to predict changes in cognitive
ability dymanics using neurophysiological parameters.
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