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Jump intermittency as a second type of transition to and from generalized synchronization
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The transition from asynchronous dynamics to generalized chaotic synchronization and then to completely
synchronous dynamics is known to be accompanied by on-off intermittency. We show that there is another
(second) type of the transition called jump intermittency which occurs near the boundary of generalized
synchronization in chaotic systems with complex two-sheeted attractors. Although this transient behavior also
exhibits intermittent dynamics, it differs sufficiently from on-off intermittency supposed hitherto to be the only
type of motion corresponding to the transition to generalized synchronization. This type of transition has been
revealed and the underling mechanism has been explained in both unidirectionally and mutually coupled chaotic
Lorenz and Chen oscillators. To detect the epochs of synchronous and asynchronous motion in mutually coupled
oscillators with complex topology of an attractor a technique based on finding time intervals when the phase
trajectories are located on equal or different sheets of chaotic attractors of coupled oscillators has been developed.
We have also shown that in the unidirectionally coupled systems the proposed technique gives the same results
that may obtained with the help of the traditional method using the auxiliary system approach.
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I. INTRODUCTION

Chaotic synchronization is a very important fundamental
phenomenon in dynamical systems [1,2] determining the col-
lective behavior of interacting nonlinear oscillators. Among
plenty of issues related to this phenomenon, a significant
role belongs to transitions from asynchronous dynamics to
synchronous ones in coupled systems. Despite the existence of
different types of chaotic synchronization, such as phase syn-
chronization [3] (PS), generalized synchronization [4] (GS),
time-scale synchronization [5] (TSS), lag synchronization [6]
(LS), complete synchronization [7] (CS), etc., the routes to
and from many kinds of synchronous regimes exhibit certain
universal properties, in particular, an intermittent behavior.
At the same time, due to different fundamental mechanisms
underlying various synchronization regimes, the types of in-
termittency on these routes are also different.

The intermittent transitional types of behavior of coupled
chaotic oscillators in the vicinity of synchronous regimes
have attracted steadfast attention of the scientific commu-
nity in the last two decades [8–12]. Nowadays, it is well
known that the type of intermittency is mainly determined
by the conditions (e.g., the value of the control parameter
mismatch, the presence of noise, etc.) for which the transition
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is considered, and not only by the type of synchronization.
For example, near the boundary of phase synchronization
three different types of intermittency (namely, type-I, eye-
let, and ring intermittencies) were detected. Specifically, in
coupled systems with parameter mismatch, if the detuning
between control parameters is relatively small, two different
types of intermittency sequentially take place [8], i.e., type-I
intermittency [13–15] and eyelet intermittency [16,17]. The
latter occurs in the close vicinity of the boundary separating
in the parameter space the areas of PS and the regime of
type-I intermittency. Alternatively, if the mismatch between
the control parameters of the interacting systems results in a
significant difference between fundamental frequencies of the
coupled chaotic oscillators, the transition to and from PS is
accompanied by ring intermittency [10,11]. Next, the route
to and from TSS is also characterized by the same types of
intermittency, more precisely, eyelet and ring intermittencies
[18]. Furthermore, under certain conditions the simultaneous
coexistence of both these types of intermittent dynamics (so-
called intermittency of intermittencies) is observed [19].

As far as GS is concerned, coupled chaotic oscillators
have been believed for a long time to go from asynchronous
oscillations to a synchronous regime only through on-off
intermittency [20,21] (in the same way as in the case of LS
[6,22] and CS [23]). In the present paper, we report on the
second type of intermittent behavior revealed in the vicinity
of the GS threshold. This type of intermittency takes place
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for chaotic systems with complex (in our case, two-sheeted)
topology of a chaotic attractor, with statistical characteristics
of reported intermittent dynamics, such as the dependence of
the mean length of laminar phases (epochs of a synchronous
motion) on the criticality parameter and laminar phase length
distribution, differing sufficiently from characteristics of on-
off intermittency. Taking into account the mechanism result-
ing in intermittent dynamics, we call such type of intermittent
behavior jump intermittency. For reference purposes we shall
also use the term “the first type of transition to generalized
synchronization” for the classical scenario of transition to and
from GS accompanied by on-off intermittency.

II. MATERIALS AND METHODS

As a model system for the study of a type of intermittent
behavior near the boundary of GS, we use two coupled
nonlinear oscillators with a complex (two-sheeted) topology
of a chaotic attractor. The oscillators are modeled by either
the three-dimensional Lorenz system

ẋ = σ (y − x),
ẏ = rx − y − xz,
ż = −bz + xy,

(1)

where (x, y, z)T is the state vector and σ = 10, b = 8/3, and
r = 35-40 are the control parameters, or the four-dimensional
chaotic Chen system [24]

ẋ = a(y − x) + eyz,
ẏ = cx − dxz + y + u,

ż = xy − bz,
u̇ = −ky,

(2)

where (x, y, z, u)T is the state vector and a = 35, b = 4.9,
c = 25, d = 5, e = 35, and k = 110-190 are the control pa-
rameters. Depending on the values of the control parameter,
the system in Eq. (2) is known to exhibit chaotic dynamics
characterized by both one and two largest positive Lyapunov
exponents [24].

Both systems (1) and (2) belong to chaotic oscillators with
a complex topology of a chaotic attractor. The phase spaces
of the systems under study consist of two different subspaces
W 1,2 having the small common region W 0 and only within
W 0 the phase trajectory can transit from subspace W 1 to W 2

and vice versa. Since each of the subspaces W 1,2 looks like
a flat sheet [see, e.g., Figs. 3(c) and 3(d)], within this paper
we shall name these oscillators as “systems with two-sheeted
attractors,” whereas each of the subspaces W 1,2 we shall
mention as “sheet.”

We start our consideration with two unidirectionally cou-
pled Lorenz systems, each given by Eq. (1), the evolution
operator of which is described as follows:

ẋ1 = σ (y1 − x1), ẋ2 = σ (y2 − x2) + ε(x1 − x2),

ẏ1,2 = r1,2x1,2 − y1,2 − x1,2z1,2, (3)

ż1,2 = −bz1,2 + x1,2y1,2,

where ε is the coupling strength governing the transition from
asynchronous dynamics to GS, r1 = 40, and r2 = 35.

To detect the boundary of GS, we use two approaches:
the auxiliary system approach [25] and the calculation of the

dependence of the largest conditional Lyapunov exponent on
the coupling strength [26]. By calculating the largest Lya-
punov exponent, we find critical coupling strength εc = 9.95,
which we verify with the auxiliary system approach and the
nearest neighbor method [4,27].

The auxiliary system approach consists in the introduction
of another (auxiliary) system the evolution operator of which
coincides with the equations of the response oscillator, while
the initial conditions of the auxiliary system differ from the
ones of the response oscillator, but belong to the same basin
of attractor. If the drive and response systems are in GS, the
states of the response and auxiliary systems coincide after
transients, whereas for asynchronous dynamics the state of the
auxiliary oscillator differs from the response one.

To detect intermittency below the threshold of GS, also
known as the intermittent generalized synchronization regime,
the difference between x variables of the response and aux-
iliary systems, ξ (t ) = x2(t ) − xa(t ), is analyzed. The time
intervals, where the absolute value of this difference exceeds
a predefined value of � = 0.005, correspond to the epochs
of asynchronous motion (in the sense of GS) referred to as
turbulent phases, while the parts of time series with this
difference being close to zero (|ξ (t )| < �) are called the
laminar phases where two coupled systems demonstrate GS.
To study the properties of intermittent dynamics, we calculate
statistical characteristics, namely, the normalized distributions
of the laminar phase lengths for fixed values of the coupling
strength, N (τ ), and the dependence of the mean laminar phase
〈τ 〉 on the criticality parameter, ε. Unfortunately, the auxiliary
system approach is not applicable to detect and study the
generalized synchronization phenomenon in bidirectionally
coupled chaotic oscillators [28] and, as a consequence, a
radically different technique is required to separate the phases
of the synchronous and asynchronous motion (in a sense of
generalized synchronization) for oscillators with the mutual
type of coupling.

Since the observed second type of transition to and from
GS (jump intermittency) is directly related to the locations
of representation points of phase trajectories on equal or
different sheets of chaotic attractors of coupled oscillators
(see Sec. III), we propose a technique to find such intervals
and calculate their lengths l . To detect whether or not the
representation points, corresponding to current states of the
interacting systems, are on equal sheets of chaotic attractors,
the time series of the systems should be shifted with respect to
each other on the time delay �τ found by means of the simi-
larity function minimum [6] with a further comparison of the
x1,2 values. The moment when x1(t − �τ ) > �x and x2(t ) <

−�x (where �x = 10 for Lorenz oscillators) or vice versa
corresponds to the divergence of trajectories of interacting
systems into the different sheets of chaotic attractors, which
come again together when |x1(t − �τ ) − x2(t )| < �x/2. The
described methodology allows us to find the residence time
lengths and obtain reasonable statistics for the analysis of
intermittency characteristics. The normalized distributions of
the residence times of phase trajectories on equal sheets of
chaotic attractors, N (l ), and the dependence of the mean
residence time of the phase trajectories located on the equal
attractors’ sheets, 〈l〉, on the coupling strength ε are also
calculated. As we shall show below (see Sec. III A), in the
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unidirectionally coupled systems the time intervals when the
drive and response oscillators are characterized by the rep-
resentation points diverging from equal to nonequal sheets
of chaotic attractors are responsible for the destruction of
the epochs of the synchronized motion (in a sense of the
generalized synchronization phenomenon), and, therefore, the
laminar (synchronous) phases, τ , and time intervals when
both the drive and response oscillators are characterized by
the representation points being on equal sheets of chaotic
attractors, l , are highly correlated with each other. As a
consequence, the statistical characteristics obtained with the
help of both the proposed (based on the consideration of
the representation point locations) and usual (based on the
auxiliary system approach) methods, i.e., N (τ ) and N (l ) (as
well as 〈τ 〉 and 〈l〉), in fact, coincide with each other for os-
cillators coupled unidirectionally, which means the developed
technique may be used to detect the laminar and turbulent
phases of motion for the oscillators coupled mutually.

To extend the obtained results to mutually coupled chaotic
systems, we also consider two bidirectionally coupled Lorenz
oscillators

ẋ1,2 = σ (y1,2 − x1,2) + ε(x2,1 − x1,2),
ẏ1,2 = r1,2x1,2 − y1,2 − x1,2z1,2,

ż1,2 = −bz1,2 + x1,2y1,2,

(4)

with r1 = 40 and r2 = 35, and two coupled Chen oscillators

ẋ1,2 = a(y1,2 − x1,2) + ey1,2z1,2,

ẏ1,2 = cx1,2 − dx1,2z1,2 + y1,2 + u1,2, (5)
ż1,2 = x1,2y1,2 − bz1,2,

u̇1,2 = −k1,2y1,2 + ε(x2,1 − x1,2),

with k1 = 110 and k2 = 190.
To explain theoretically the mechanism of transition to and

from GS for coupled oscillators with two-sheeted topology
of attractors and obtain analytical expressions for statisti-
cal characteristics of intermittency, we consider the simplest
theoretical model in the form of one-dimensional stochastic
differential equation

dx

dt
= −dU (x)

dx
+ η(t ), (6)

with the asymmetric bistable potential

U (x) = x4

4
− x2

2
+ bx, (7)

where η(t ) is supposed to be zero mean δ-correlated Gaussian
noise [〈η(t )〉 = 0, 〈η(t )η(τ )〉 = Dδ(t − τ )], b is the asymme-
try parameter, and D is the noise intensity.

III. RESULTS AND DISCUSSION

A. Unidirectionally coupled Lorenz oscillators

The dependencies of the four largest Lyapunov exponents
[29] λi, i = 1, 4 on the coupling strength ε for two unidirec-
tionally coupled Lorenz systems Eq. (3) are given in Fig. 1.
The point εc where the second Lyapunov exponent λ2, being
the largest conditional Lyapunov exponent, changes its sign
from positive to negative corresponds to the onset of GS.

Just below the generalized synchronization onset the in-
termittent generalized synchronization regime takes place.
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FIG. 1. Four largest Lyapunov exponents vs coupling strength ε

for two unidirectionally coupled Lorenz oscillators (3). The arrow
indicates the onset of GS.

The statistical characteristics of this kind of dynamical be-
havior obtained by means of the auxiliary system approach
are present in Fig. 2. The laminar phase length distributions
for several fixed values of the coupling strength are shown
in Fig. 2(a), while the dependence of the mean length of the
laminar phases on the coupling parameter ε is illustrated in
Fig. 2(b). For reference, theoretical dependences

T = 〈τ 〉 ∼ (εc − ε)−1 (8)

and

N (τ ) ∼ τ−3/2 (9)

corresponding to on-off intermittency are known to be ob-
served in the vicinity of GS, as shown in Fig. 2 by dashed
lines. One can easily see that for unidirectionally coupled
Lorenz systems (3) the observed statistical characteristics
differ radically from ones prescribed for on-off intermittency.
Therefore, one can conclude that in the considered case,
namely, for the Lorenz oscillators which are characterized
by the complex two-sheeted chaotic attractor, another type of
intermittent behavior (namely, jump intermittency) accompa-
nies the transition to and from GS.

To explain and confirm our findings, we now consider the
mechanism of the laminar (synchronous) phase interruption in
more detail. The fragment of typical time series corresponding
to the intermittent behavior near GS observed in unidirec-
tionally coupled Lorenz systems Eq. (3) below the critical
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FIG. 2. (a) Normalized laminar phase length distributions and
their approximations by the exponential law for fixed values of the
coupling strength [plus signs (curve 1) correspond to ε = 9.9, circles
(curve 2) correspond to ε = 9.7, and diamonds (curve 3) correspond
to ε = 9.3]. (b) Mean length of laminar phases vs coupling parameter
ε with its exponential approximation (solid line). The dashed lines
represent theoretical curves defined by Eqs. (8) and (9) correspond-
ing to on-off intermittency.
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FIG. 3. (a) Fragment of time series of drive x1(t ) (solid line)
and response x2(t ) (dashed line) unidirectionally coupled Lorenz
oscillators given by Eq. (3). (b) Time evolution of the absolute
value of the difference between x coordinates of the response and
auxiliary systems, |ξ (t )| = |x2(t ) − xa(t )|. (c) Drive and (d) response
chaotic attractors of interacting Lorenz oscillators (light gray) and
parts of trajectories in phase spaces corresponding to the beginning
of turbulent (asynchronous) phases in drive (solid line) and response
(dashed line) oscillators. ε = 9.5.

coupling strength εc is given in Fig. 3. Figure 3(a) illustrates
the behavior of x coordinates of the drive [x1(t )] and response
[x2(t )] systems. The dependence of the absolute value of the
difference between x coordinates of the response and auxiliary
systems, ξ (t ) = x2(t ) − xa(t ), is shown in Fig. 3(b).

According to the definition of GS and the concept of
the auxiliary system approach, the synchronous behavior of
the interacting unidirectionally coupled chaotic oscillators is
characterized by the coincidence of the states of the response
and auxiliary systems and, as a consequence, by the condition
ξ (t ) ≈ 0. Therefore, a rapid growth of the difference between
the states of the response and auxiliary systems, indicated
in Fig. 3(b) by the vertical shadow rectangle, means the
interruption of the laminar phase and the start of the turbu-
lent (asynchronous) phase of motion for which |ξ (t )| differs
from zero.

One can see from Fig. 3 that the growing difference
between the states of the response and auxiliary systems
[Fig. 3(b)] is preceded by the divergence (jump) of the phase
trajectories of the drive and response oscillators into different
sheets of chaotic attractors [see Figs. 3(a), 3(c), and 3(d)].
This alteration of system dynamics leads to a dramatic sharp
increase in the coupling term ε(x1 − x2) which is responsible
for the oscillator interaction. The value of the coupling term is

p(t)

t
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FIG. 4. (a) Normalized distributions of time interval lengths,
when both Lorenz oscillators given by Eq. (3) are characterized by
representation points being on equal sheets of attractors with their
approximations by the exponential law obtained for fixed values of
the coupling strength [plus signs (curve 1) correspond to ε = 9.9,
circles (curve 2) correspond to ε = 9.7, and diamonds (curve 3) cor-
respond to ε = 9.3]. (b) Mean duration of time intervals when phase
trajectories of coupled systems are within equal sheets of chaotic
attractors vs coupling parameter ε and its exponential approximation.

rapidly increasing many times (in the case under consideration
approximately by an order of magnitude), which may be
considered and interpreted as a sudden powerful impulse
leading the slave oscillator out of the steady synchronous (in
the sense of GS) mode. Therefore, the divergence of the phase
trajectories of interacting systems results in the destruction of
the synchronous regime, and, as a consequence, the laminar
phase is interrupted and the turbulent phase corresponding
to the asynchronous motion starts. Due to the sufficiently
large coupling strength, ε, the interacting systems tend to
return to the synchronous state. However, since some time
is needed for the oscillators to reach synchronization, the
response and drive systems become synchronized again after
some transients [see Figs. 3(a) and 3(b)]. Since the condition
of the laminar phase defines a region on the full chaotic
attractor and the laminar length corresponds to the residence
time in this region, it can explain qualitatively the exponential
character of the laminar phase length distribution.

Thus, we can conclude that the lengths of the laminar
phases and time intervals when both the drive and response
oscillators are characterized by the representation points being
on equal sheets of chaotic attractors must not coincide (but
should correlate) with each other. The divergence of the
system phase trajectories to different attractor sheets, in turn,
due to the dramatic increase of the coupling term magnitude
gives rise to the asynchronous motion stage corresponding to
the turbulent phase of the intermittent generalized synchro-
nization regime. This fact results in a good agreement between
distributions of the laminar phase lengths and durations of the
time intervals when phase trajectories of the coupled systems
are within equal sheets of chaotic attractors, as well as the
dependencies of the mean values of these quantities on the
coupling parameter ε (compare Figs. 2 and 4). Obviously, this
finding allows us to use the proposed technique based on the
consideration of the representation point locations to estimate
carefully the statistical characteristics of the intermittent be-
havior below the generalized synchronization onset.

Thus, based on the results presented above, we can con-
clude that in the coupled nonlinear oscillators not only on-
off intermittency can occur on the route to and from the
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GS, but also another radically different mechanism called
jump intermittency can take place. The former mechanism
usually occurs for relatively small coupling strengths, whereas
for stronger coupling the second type of transition takes
place [30]. More precisely, for the systems with the complex
topology of a chaotic attractor the “classical” mechanism of
transition to and from generalized chaotic synchronization
also exists, but it takes place for the smallest values of the
coupling strength and is masked and suppressed by the sec-
ond mechanism considered above and caused by two-sheeted
attractor structure.

As mentioned above, the statistical characteristics of the
revealed type of intermittency (jump intermittency) differ
significantly from on-off intermittency. One can see from
Figs. 2 and 4 that both the laminar phase distributions for
the fixed value of the coupling strength (N (τ ), N (l )) and the
dependencies of the mean length of the laminar phase on the
coupling parameter ε for the regime of jump intermittency are
governed by the exponential law.

B. Theoretical background of the second type of intermittency
near GS onset

The theoretical explanation of the intermittent behavior
of coupled systems with two-sheeted topology of attractors
consists in the consideration of the bistable system behavior
in the presence of noise. Since laminar (synchronous) phases
of motion in the vicinity of GS in this kind of systems
are interrupted by the divergence of phase trajectories of
the coupled oscillators on different sheets of attractors (see
Sec. III A and Fig. 3), the observed dynamics can be treated
as switches between two possible states (synchronous, when
both phase trajectories are on equal sheets of attractors, and
asynchronous, when the phase trajectories are on different
sheets) induced by deterministic instability of dynamical
chaos playing the same role as noise.

In this paper we suppose that such kind of behavior can be
described with the help of the simplest model [Eqs. (6) and
(7)]. This working hypothesis is grounded on the empirical
thoughts so far, but will be proven below by the excellent
agreement between the theoretical predictions deduced within
the framework of the proposed model and data obtained with
the help of numerical calculations.

Within the framework of the proposed model one of the
minima of the potential function (7) is supposed to corre-
spond to a synchronous (in the sense of GS) state, xs, of
the interacting systems, whereas the other one, xa, refers to
the asynchronous motion. Since an increase in the coupling
strength enlarges epochs of the synchronous behavior, it is
reasonable to assume that the coupling strength plays the
role of asymmetry parameter b in the model system given
by Eqs. (6) and (7). Having analyzed the model behavior
(see [31]), one can find the residence time distribution (being
the analog for the distribution of time interval lengths when
coupled chaotic oscillators are characterized by representation
points being on equal sheets of attractors) in the form

p(l ) = 1

L
exp

(
− l

L

)
, (10)

where L = 〈l〉 is the mean length of the residence times
for the fixed values of the control parameters which can be
estimated as

L ∼ exp

(
2U (x∗)

D

)∫ x∗

−∞
exp

(
−2U (ξ )

D

)
dξ, (11)

where x∗ is the unstable equilibrium point separating two
minima of the potential function given by Eq. (7) which,
in turn, may be approximately simplified to the exponential
law [31]

L ≈ K exp(αb), (12)

where K and α are constants and the asymmetry parameter b
is supposed to be proportional to the coupling strength b ∼
ε. Thus, one can see that the theoretical Eqs. (10) and (12)
are in a good agreement with the numerically calculated data
for the intermittent behavior of the unidirectionally coupled
oscillators with two-sheeted chaotic attractors in the vicinity
of GS (see Figs. 2 and 4).

Nevertheless, there is one important point to pay attention
to. The exponential approximation of the dependence of the
mean length L of the residence times on the coupling pa-
rameter ε (12) has been deduced in [31] under assumption
that unstable equilibrium point x∗ is approximately equal
to the value of the asymmetry parameter b, i.e., x∗ ∼ b. It
means that in immediate proximity to the catastrophe point
bc = 2/(3

√
3) corresponding to the boundary of generalized

synchronization Eq. (12) may become less accurate. Although
in the above considered case of the unidirectionally coupled
Lorenz oscillators (3) this kind of accuracy is quite enough
(see Figs. 2 and 4), for the high precision consideration of the
system behavior in the very closest vicinity of the GS onset
more careful analysis of model system (6) and (7) is required.

The coordinate of the unstable equilibrium point x∗ sepa-
rating two minima of the potential function U (x) depends on
the asymmetry parameter b as

x∗(b) = cos
(

ϕ(b)
3

) − √
3 sin

(
ϕ(b)

3

)
√

3
, (13)

where = ϕ(b) is connected with parameter b by

tan ϕ =
√

12 − 81b2

9b
, with 0 < b � bc = 2

3
√

3
. (14)

To describe the system behavior in the closest vicinity of
the catastrophe point bc which corresponds to the disappear-
ance of the potential function minimum xa describing the
asynchronous behavior of interacting oscillators (in the sense
of generalized synchronization), and, as a consequence, to the
onset of the generalized synchronization regime in the system
with two-sheeted topology of attractors, one can decompose
the relation (13) for the unstable point x∗ in a Taylor series
in the vicinity of the critical point bc for b = bc + δ, where
δ � 0 and |δ| 	 bc:

x∗ ≈ 1√
3

−
√−δ

4
√

3
+ δ

6
− 5(−δ)3/2

24 4
√

27
− δ2

9
√

3
+ O[−δ]5/2.

(15)
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The potential function U (x) calculated just below the catas-
trophe point bc in the coordinate x∗ corresponding to the local
maximum, in turn, may be found as

U (x∗) ≈ 1

12
+ δ√

3
+ 2(−δ)3/2

3 4
√

3
+ δ2

12
. (16)

Now, taking into account that the integral in Eq. (11) may be
described adequately by the exponential approximation

∫ x∗

−∞
exp

(
−2U (ξ )

D

)
dξ ∼ exp(kb) (17)

(see [31] for details), the dependence of the mean length of
the residence times L on the deviation δ of the asymmetry
parameter, b, from the critical point bc may be written in
the form

L ≈ C exp(kδ)

× exp

[
2

D

(
1

12
+ δ√

3
+ 2(−δ)3/2

3 4
√

3
+ δ2

12

)]
. (18)

The increase of the coupling strength ε between oscillators
reduces the epochs of the asynchronous motion that in the
considered model (6) and (7) is consistent with the extinc-
tion of the potential function minimum xa (representing the
stages of the asynchronous dynamics) with the growth of the
asymmetry parameter b. The merging and disappearance of
the extremum points xa and x∗ for b = bc in the model (6)
and (7) corresponds to vanishing of the asynchronous stages
of coupled oscillator dynamics at ε = εc. Having supposed
that (ε − εc) ∼ (b − bc), we can conclude that to apply the
obtained theoretical prediction to coupled oscillators with
two-sheeted topology of chaotic attractors one has to substi-
tute β(ε − εc) for δ in (18) where β is some constant.

Finally, one more important thing needs to be stressed.
From the proposed theory one can see that the mean laminar
phase length does not diverge at the onset of GS contrary to
the well-studied cases of all known types of intermittency.
Indeed, according to Eq. (18) the mean residence time length
L does not tend to become infinite, but is limited by the value
of C exp(1/6D) at critical point δ = 0. This phenomenon can
be explained by the fact that the transition to the generalized
synchronization regime in the case of the oscillators with two-
sheeted topology of chaotic attractors is determined by the
collapse of the asynchronous epochs of the motion, whereas
for all other types of intermittent dynamics the transition
from intermittent to regular behavior is caused mainly by the
unlimited increase of the laminar phase lengths.

C. Mutually coupled oscillators

To confirm and prove the generality of jump intermittency
near the GS onset as well as to verify the theoretical predic-
tions obtained above, let us consider two additional cases of
the behavior of mutually coupled systems. The key feature
of GS in bidirectionally coupled chaotic oscillators is the
fundamental inapplicability of the auxiliary system approach
to detect and study GS [28]. It was hitherto impossible to
characterize intermittency near the GS threshold because there
were no ways to detect and separate intervals of synchronous
(laminar phase) and asynchronous (turbulent phase) behav-
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FIG. 5. Four largest Lyapunov exponents vs coupling strength ε

in two mutually coupled Lorenz oscillators (4). The arrow indicates
the onset of GS.

iors. At the same time, the above-mentioned mechanism of
the large rapid increase in the magnitude of the coupling term
at the moments of the divergence of the phase trajectories
in the different sheets of chaotic attractors resulting in the
destruction of the synchronous motion seems to be actual
also for the mutually coupled oscillators. Therefore, it can be
used to estimate the synchronous and asynchronous phases of
motion in the close vicinity of the generalized synchronization
threshold, provided that this threshold is confirmed with the
help of methods that remain operable in the case of mutual
types of coupling.

Thanks to the revealed mechanism of the destruction of
the synchronous motion (due to the dramatic increase of the
coupling term magnitude) and the scenario of the transition to
and from GS in oscillators with the two-sheeted structure of a
chaotic attractor and, as a consequence, the strong correlation
between laminar phases of the coupled oscillators’ motion
and time intervals when phase trajectories of the interacting
systems are within equal sheets of chaotic attractors, one
can now accurately estimate statistical characteristics of the
transitional behavior in the vicinity of GS, whereas the onset
of GS can be found with the help of the Lyapunov exponent
spectrum [32] and verified by means of the nearest neighbor
method [4,27].

1. Lorenz oscillators with bidirectional coupling

Consider now intermittent GS in two mutually coupled
Lorenz oscillators given by Eq. (4). The dependencies of the
four largest Lyapunov exponents on the coupling strength ε

are present in Fig. 5. Since the Lyapunov exponent spectrum
of each Lorenz oscillator consists of one positive, one zero,
and one negative Lyapunov exponents, for mutually coupled
Lorenz oscillators the second positive Lyapunov exponent
crosses zero and changes its sign from positive to negative
at critical coupling strength point εc = 5.9 corresponding to
the GS threshold. We also test both the presence of GS
above εc and its absence below the critical point with the
help of the nearest neighbor method. Therefore, the statistical
characteristics for the residence times of the phase trajectory
location on equal sheets of chaotic attractors are examined
below this critical value of the coupling strength, εc. We select
the coupling strength range ε ∈ [4, 6] to study the system
dynamics through the transition to GS.

One can easily see from Fig. 6(a) that for the mutually
coupled Lorenz oscillators given by Eq. (4) the distributions
of time interval lengths when both systems are characterized
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FIG. 6. (a) Normalized distributions of time interval lengths
when both Lorenz oscillators given by Eq. (4) are characterized by
representation points being on equal sheets of attractors with their
exponential approximations obtained for fixed values of the coupling
strength [circles (curve 1) correspond to ε = 5.8, up triangles (curve
2) correspond to ε = 5.5, squares (curve 3) correspond to ε = 5.0,
and down triangles (curve 4) correspond to ε = 4.5]. (b) Mean du-
rations of time intervals when phase trajectories of coupled systems
are within equal sheets of chaotic attractors vs coupling parameter
ε and their theoretical approximations (12) (dashed lines) and (18)
(solid lines) obtained for three different values of control parameter
r1: r1 = 35 (line 1), r1 = 37 (line 2), and r1 = 45 (line 3).

by representation points being on equal sheets of attractors
are qualitatively the same as for the unidirectionally coupled
systems given by Eq. (3) [compare with Fig. 4(a)].

We have also calculated the dependencies of the mean
residence time of the phase trajectories located on the equal
attractors’ sheets, L = 〈l〉, on the coupling strength ε, for three
different values of the control parameter r1 to consider how
the jump intermittency depends on the parameter mismatch
between the coupled systems. One can see from Fig. 6(b)
when the parameter mismatch is sufficient, i.e., the control
parameter values (in our paper we have varied the control
parameter r1) differ noticeably from each other, that the
dependence of the mean residence times L on the coupling
strength ε is very close to the exponential law [see curve
3 in Fig. 6(b)]. This finding agrees well with the results
obtained for two unidirectionally coupled Lorenz oscillators
(3) considered above in Sec. III A.

With the decrease of the difference between control param-
eter values r1 and r2 of interacting systems (when, as a conse-
quence, both oscillators become more and more equal) the de-
pendence L(ε) more and more deviates from the exponential
law. Obviously, Eq. (12) becomes inapplicable to describe the
intermittent behavior of the coupled systems with two-sheeted
topology of chaotic attractors in the closest vicinity of the
generalized synchronization regime onset, exactly in the same
way as it was described above in Sec. III B, and we have to re-
fine Eq. (18) obtained within the framework of the developed
theory. Remarkably, in all cases (both completely identical
oscillators and systems with different parameter mismatch)
the theoretical relation Eq. (18) fits perfectly the calculated
numerical data characterizing the intermittent behavior of
mutually coupled Lorenz systems (4).

Therefore, we can conclude that both unidirectionally and
mutually coupled Lorenz oscillators with two-sheeted topol-
ogy of chaotic attractors exhibit (both for the identical and
mismatched control parameters) the same type of transition
to and from GS accompanied by the jump intermittency the
statistical characteristics of which radically differ from on-off
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FIG. 7. Five largest Lyapunov exponents vs coupling strength ε

for two mutually coupled four-dimensional chaotic oscillators given
by Eq. (5). The arrow indicates the onset of GS.

intermittency observed in the vicinity of the onset of GS in the
classical case.

2. Four-dimensional oscillators coupled mutually

In the next step in our paper, we consider the transi-
tional behavior of the chaotic system with four-dimensional
phase space and two-sheeted topology of its chaotic attractor
[Eq. (2)] in the vicinity of GS. Again, the threshold of GS,
εc ≈ 105, is found with the help of the Lyapunov exponents
spectrum (see Fig. 7) and verified by the nearest neighbor
method. Below the critical coupling strength εc, we consider
statistical characteristics for residence times of phase trajec-
tory locations on equal sheets of chaotic attractors for the
Chen coupled oscillators given by Eq. (5).

One can easily see from Fig. 8 that the statistical charac-
teristics for two mutually coupled four-dimensional chaotic
oscillators in the vicinity of the GS onset are exactly the same
as for two Lorenz systems coupled either unidirectionally or
bidirectionally. So, the distributions of time interval lengths,
when two coupled chaotic oscillators given by Eq. (5) have
representation points on equal sheets of attractors, obey an
exponential law [see Fig. 8(a)]. Similarly, since the control
parameters k1 and k2 of the coupled oscillators differ from
each other sufficiently and one deals with the case of the large
parameter mismatch, the dependence of the mean duration of
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FIG. 8. (a) Normalized distributions of time interval lengths
when two coupled chaotic oscillators each given by Eq. (5) are
characterized by representation points being on equal sheets of
attractors with their exponential approximations obtained for fixed
values of coupling strength [circles (curve 1) correspond to ε = 100,
up triangles (curve 2) correspond to ε = 70, and squares (curve 3)
correspond to ε = 50]. (b) Mean duration of time intervals when
phase trajectories of coupled systems are within equal sheets of
chaotic attractors vs coupling parameter ε (circles) and its exponen-
tial approximation (solid line).
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the residence times of phase trajectories can also be approxi-
mated by an exponential curve [Fig. 8(b)].

Thus, having examined the transitions to and from GS in
both unidirectionally and mutually coupled oscillators with
the complex two-sheeted structure of chaotic attractors, we
conclude that we deal with the jump intermittency the sta-
tistical characteristics of which completely differ from ones
revealed for well-known on-off intermittency taking place
near the onset of chaotic GS in the case of transition for
classical chaotic systems, like Rössler oscillators. The core
mechanism resulting in the establishment of the synchronous
regime (in the sense of GS) is explained by two-sheeted
topology of chaotic attractors of interacting systems.

IV. CONCLUSION

In our paper, we have revealed the second type of in-
termittent generalized synchronization differing greatly from
on-off intermittency previously observed in the vicinity of
the GS onset. This type of intermittent behavior, called jump
intermittency, accompanies the transition to and from GS in
coupled oscillators with complex two-sheeted topology of
chaotic attractors. Due to the complex attractor topology, the
mechanism responsible for switches of phase trajectories of
the coupled oscillators between locations at equal and differ-
ent sheets of attractors suppresses the “traditional” scenario
of the transition to and from GS (accompanied by on-off
intermittency), which results in an increase in the critical
coupling strength (corresponding to the GS onset) and the
presently studied type of intermittent behavior. In our paper
we have shown that jump intermittency takes place for the
different mismatches of the control parameters of interacting
systems, whereas the statistical characteristics of intermittent
behavior below the onset of the generalized synchroniza-
tion regime for the systems with two-sheeted topology of a
chaotic attractor differ radically from the characteristics that
are known for the classical case of intermittent generalized
synchronization. Moreover, in this paper we have reported
on the type of intermittency (namely, jump intermittency)
for which the mean length of the laminar phases does not
diverge at the critical point (contrary to all other known types
of intermittent behavior) due to the different mechanism of
transition connected with the collapse of the stable state being
responsible for the asynchronous (from the point of view of
GS) stage of motion.

The revealed mechanism governing the system dynamics
in the vicinity of the generalized synchronization onset allows
us to develop a technique based on the consideration of the
representation point locations for estimation of the statistical

characteristics of intermittent behavior of coupled oscillators
with the two-sheeted topology of attractors. The developed
technique gives results that are equal to ones obtained with
the help of the usual method based on the auxiliary system
approach in the case of the unidirectionally coupled oscillators
and may be used efficiently for mutually coupled systems with
complex topology of attractors for which up to now there were
no known methods for laminar and turbulent epoch detection.

The theoretical expressions describing statistical character-
istics of the revealed second type of intermittent GS are also
given in this paper. The obtained theoretical predictions agree
well with the results of numerical simulations of intermittent
behavior near the generalized synchronization onset for both
the unidirectionally and mutually coupled chaotic oscillators
with two-sheeted topology of attractors. The fact that the
phenomenon in chaotic deterministic systems is described by
the stochastic model is not surprising since, on the one hand,
the proposed stochastic model represents the bistable essence
of the observed effect and, on the other hand, there is a known
close relationship between the chaotic deterministic dynamics
and the stochastic system behavior (see, e.g., [33–37]). More-
over, it is possible to explain the absence of the divergence of
the mean length of the laminar phases through the transition
to the GS regime in bistable systems by means of the notion
of deterministic nonlinear dynamics. Indeed, the stable state,
describing in the framework of the stochastic model the asyn-
chronous regime, corresponds to a certain region in the phase
space of coupled chaotic oscillators. Around the GS transition
point the attractor transforms so it gets out of this region (that
is clearly indicated by the sign change of the second positive
Lyapunov exponent; see Figs. 1, 5, and 7) and no divergence
will be observed.

We firmly believe that our results significantly expand
the existing theoretical understanding of the mechanisms and
properties of GS and the transitional behavior in the interact-
ing systems with complex chaotic dynamics.
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