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Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto

oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in

fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We

determine this by extending the mean-field theory of adaptively coupled oscillators with full

coupling to the case with partial coupling of a fraction f. This analysis shows that a metastable

region exists for all finite values of f> 0, and therefore explosive synchronization is expected for

any perturbation of adaptively coupling added to the standard Kuramoto model. We verify this

theory with GPU-accelerated simulations on very large networks (N� 106) and find that, in fact, an

explosive transition with hysteresis is observed for all finite couplings. By demonstrating that ex-

plosive transitions coexist with standard transitions in the limit of f! 0, we show that this behavior

is far more likely to occur naturally than was previously believed. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4953345]

Many complex systems exhibit synchronization. From

familiar examples like fireflies lighting up and audience

clapping to crucial frontiers of complexity science like

AC power generation and neural oscillations, synchroni-

zation is ubiquitous. The transition between the

desynchronized and synchronized states is of fundamen-

tal importance for understanding the dynamics of these

systems, as well as their resilience to environmental dis-

turbances. Recently, it has been shown that this transition

can be discontinuous: the system does not pass through

intermediate partial synchronization but rather jumps

from the desynchronized to synchronized state, and vice

versa. It can also show hysteresis, with different transi-

tion points depending on its initial conditions. Using a

new model, we show that this “explosive synchronization

(EC)” is in fact far more easily achieved than was previ-

ously thought. By extending a recent model of adaptively

coupled Kuramoto oscillators to the case of partial adapt-

ive coupling, we show that for any finite fraction of

adaptive coupling, an explosive transition with hysteresis

takes place. This indicates that the explosive regime co-

exists with the standard regime of the Kuramoto model,

shedding new light on its dynamics and offering a prom-

ising new way to model real-world complex systems.

I. INTRODUCTION AND BACKGROUND

Synchronization is a ubiquitous feature in a wide range

of complex systems. Many physical systems exhibit

synchronization: fireflies flashing or people clapping in uni-

son,1,2 diurnal rhythms in human organ systems, and AC

electricity generation,3–5 to name but a few. Several canoni-

cal models have been proposed to capture the way in which

complex systems composed of many entities spontaneously

synchronize. One of the most widely studied is the

Kuramoto oscillator model,6 where each oscillator fulfills

_hi ¼ xi þ k
X

j

Aij sinðhj � hiÞ;

in which hi is the instantaneous phase, xi is the natural

frequency of oscillator i, k is a parameter representing the

coupling strength, and Aij is an adjacency matrix describing

the topology of the connections between the nodes. In this

way, all nodes simultaneously pull their neighbors toward

their phase and are themselves pulled towards their neigh-

bors’ phase. For many network topologies, as the coupling

strength k is increased, the oscillators spontaneously syn-

chronize to the same frequency.7,8 Recently, explosive syn-

chronization has been observed in coupled networks. In

contrast to classical synchronization transitions, explosive

synchronization (ES) is discontinuous and irreversible. Since

abrupt synchronization transitions (albeit without hysteresis)

were first reported in 2005,9 explosive synchronization has

been studied widely.10–21 For instance, it was studied in the

context of periodic phase oscillators for scale-free (SF) net-

work’s topologies, where an imposed positive correlation

between the natural frequencies of the oscillators and the

degrees of nodes was shown to lead to the explosive transi-

tion,10 which was later verified experimentally in a chaotic

electronic system.11 A similar transition was observeda)Electronic mail: michael.danziger@biu.ac.il

1054-1500/2016/26(6)/065307/6/$30.00 Published by AIP Publishing.26, 065307-1

CHAOS 26, 065307 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  78.106.16.242 On: Tue, 14 Jun

2016 21:26:35

http://dx.doi.org/10.1063/1.4953345
http://dx.doi.org/10.1063/1.4953345
http://dx.doi.org/10.1063/1.4953345
mailto:michael.danziger@biu.ac.il
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4953345&domain=pdf&date_stamp=2016-06-08


when natural frequencies and coupling strengths were corre-

lated.18,19 Both correlation approaches can be shown to be

equivalent in the mean-field.17,19 Furthermore, it was also

shown that ES can be considered as the counterpart of an ex-

plosive percolation process22,23 in dynamical phase space.24

Another major direction of research on complex systems

in recent years is the expansion of network science25–30 to

the study of multilayer networks and networks of net-

works.31–35 Essentially, a network of networks is a system in

which a set of nodes are connected via qualitatively different
links. So far, the combination of links that has been most

fruitful to study has been percolation on a network composed

of connectivity and dependency links. The connectivity links

represent the generic flow that is assumed in single network

studies of percolation29,36 while the dependency links repre-

sent the supply of some critical resource, without which the

target node is unable to function. It was found that this com-

bination of links can lead to cascading failures and abrupt,

first-order transitions, which are absent in single network

percolation. This framework was first introduced in 2010 to

describe the dependencies between different infrastructure

networks, where the connectivity links are exclusively within

the network while the dependency links connect between the

networks.31 However, it was later shown that the same

effects arise in systems where the dependency and connec-

tivity links are combined in a single network.37–39

One of the most promising models that exhibits explo-

sive synchronization phenomenon is the adaptive coupling

introduced by Zhang et al.40 In this model, the coupling

strength of a given node is adaptive: it changes as a function

of the dynamic state of the system. Specifically, the standard

coupling k is multiplied by a factor ai which is proportionate

to the local-synchronization state—either at node i or at

some other node. This model is significant because it

requires no special constraints on the frequencies or topolo-

gies but is in fact totally generic. This adaptive coupling rep-

resents an auto-catalytic interaction if it is to the same node:

as a node’s neighborhood becomes more synchronized, the

node itself becomes easier to synchronize. Or if the link is to

another node, it represents an interdependent or excitatory

relationship (in the case of neural models) between the

nodes. It is of particular interest because, by tying the cou-

pling strength of one node to the local-order of another node,

it effectively introduces a new type of link, and can be under-

stood in the framework of networks of networks.41

Because the abrupt, first-order, transitions, which charac-

terize explosive synchronization in the adaptive coupling

model of Zhang et al.40 are absent when the coupling is

removed, it is of fundamental interest to understand at what

point the transition between the smooth transition behavior

and the abrupt transition takes place. The analogous question

has been studied extensively for percolation in interdependent

networks, where it has been shown analytically that for ran-

dom networks there exists a critical coupling fraction below

which the system undergoes a continuous second-order transi-

tion and above which it undergoes an abrupt first-order transi-

tion.42–44 Spatially embedded networks, on the other hand,

undergo a first-order transition for any finite level of coupling

when the dependency links are random,45 but have a critical

coupling fraction that depends on the length of the depend-

ency links when those are of limited length.46,47 Similar stud-

ies have been conducted for explosive synchronization, and it

has been shown that there exists a critical fraction of nodes

with correlated degree and natural frequency in scale-free net-

works below which the transition is not explosive.12

Zhang et al.40 analyzed this model for full coupling

(f¼ 1) but left open the question of whether or not there exists

a minimal coupling fc below which the explosive transition

does not occur or whether the explosive transition co-exists

with the standard Kuramoto synchronization transition. Here,

we develop a mean-field theory for partially coupled oscillator

networks and show via analytic calculations and numeric sim-

ulations on very large networks that fc¼ 0 and the phases

coexist. This is the first result that shows explosive synchroni-

zation coexisting with the standard phase-transition with no

critical coupling threshold. As such, it has broad implications

for the realizability of explosive synchronization in real-world

systems. Because the phenomenon emerges for any finite frac-

tion of adaptively coupled nodes and without specific con-

straints on frequencies or degrees, it is more likely to be

observed in natural systems.

II. OVERVIEW OF MODEL

We describe a system of coupled oscillators which

behave according to the following dynamic equation:

_hi ¼ xi þ kai

XN

j¼1

Aij sinðhj � hiÞ; (1)

where hi and xi are the phase and natural frequency of oscil-

lator i, respectively, Aij¼Aji¼ 1 if oscillators i and j are con-

nected and zero otherwise, k is the overall coupling strength

and ai is equal to the local order parameter ri for a fraction f
of the nodes and equal to 1 for the remaining 1� f. The local

order is defined as

ri ¼
1

ki

X
j2n:n:

exp i hj � w
� �� ������

�����; (2)

where ki is the degree of node i, w is the average phase of the

neighbors of i, and the sum is taken over all of the immediate

neighbors of node i. The new term, ai, introduces an adaptive

factor to the coupling strength which gives rise to the explo-

sive transition. When ai¼ ri, the onset of synchronization is

auto-catalytic: as the neighbors of node i become more

synchronized, their ability to impact the phase of node i also

increases. In general, the local order for the ai term can be

measured at node i itself or at another node, even a node in

another network. In this sense, the ai term can be considered

a link (possibly a self-link) of a qualitatively different sort

than the typical Kuramoto oscillator coupling.

For the case of full adaptive coupling (f¼ 1), Zhang

et al.40 obtained the following self-consistent equation for

single networks or pairs of identical networks based on a

mean-field approximation

R ¼ 1

N �k

X
jxij<kR2ki

ki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xi

kR2kj

� 	2
s

; (3)
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or in the continuum approximation

R ¼ 1
�k

ðkR2k

�kR2k

dx
ðkmax

kmin

dkP kð Þg xð Þk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

kR2k

� 	2
s

: (4)

Over the domain of R, this equation has one or three solu-

tions depending on the value of k. In the mean field, the

result is the same whether the adaptive term is measured at

the node itself, at a different node, or even at a node in

another network with the same degree distribution.

Though that work included numerical results for systems

with adaptive coupling on only a fraction f of the nodes, they

did not treat this case theoretically. Furthermore, the numeri-

cal tests there appeared to indicate that below a critical frac-

tion fc, the explosive transition disappears and the system

undergoes continuous onset of synchronization. However, the

authors were unable to tell if those results were indicative of

a critical threshold fc or merely large fluctuations in the order

parameter that overwhelm the hysteresis region. Here, we

extend the mean-field theory for a fraction f of adaptively

coupled oscillators and 1� f standard Kuramoto oscillators.

We find that, in fact, the explosive transition occurs for all

finite fractions of adaptively coupled nodes. This was not

observed in the earlier study because, though present, the

explosive regime is very small for f and essentially undetect-

able in small systems. To overcome this problem, we have

shifted from CPU to GPU implementations, and have thus

been able to simulate systems up to 1000 times larger (�106)

than the previous research (or other standard studies in the

field).

III. THEORY FOR A FRACTION f OF ADAPTIVELY
COUPLED OSCILLATORS

Because the theory is the same for single networks with

self-coupling and identical pairs of networks, we present the

solution for a single network for simplicity. We assume that

there are two populations of oscillators: a fraction f which

are adaptively coupled (I) and 1� f non-adaptively coupled

(II). For concreteness, we assume that xi are drawn uni-

formly from a uniform distribution between �1 and 1 and

that the network has a Poisson degree distribution. This gives

us two equations:

_h
I

i ¼ xi þ kri

XN

j¼1

Aij sinðhj � hiÞ; (5)

_h
II

i ¼ xi þ k
XN

j¼1

Aij sinðhj � hiÞ: (6)

These equations can be rewritten using the local order

parameter (2) and average phase of neighbors w as

_h
I

i ¼ xi þ kr2
i ki sinðw� hiÞ; (7)

_h
II

i ¼ xi þ kriki sinðw� hiÞ: (8)

In the mean-field approximation we approximate ri �
R; w � W (the average global phase) and obtain N uncoupled
equations:

_h
I

i ¼ xi þ kR2ki sinðW� hiÞ; (9)

_h
II

i ¼ xi þ kRki sinðW� hiÞ: (10)

Changing variables to Dhi ¼ h�W with _W ¼ X, the av-

erage natural frequency, and utilizing the fact that the natural

frequency distribution is centered at zero (i.e., X¼ 0), we

obtain

_DhI
i ¼ xi � kR2ki sinðDhiÞ; (11)

_DhII
i ¼ xi � kRki sinðDhiÞ: (12)

The Dhi values are self-averaged in the calculation of R

R ¼
X

i

cos Dhi: (13)

In the thermodynamic limit, only the phase-locked oscilla-

tors contribute to this sum, and we determine which oscilla-

tors are phase-locked by the fixed-points

DhI
i ¼ arcsin

xi

kR2ki


 �
; (14)

DhII
i ¼ arcsin

xi

kRki


 �
: (15)

This gives the conditions of

jxI
i j < kR2ki; (16)

jxII
i j < kRki; (17)

for the two populations of oscillators. We can now write a

combined self-consistent equation for R with both populations,

R ¼ 1

N �k
f
X

jxij<kR2ki

ki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xi

kR2ki

� 	2
s0

@

þ 1� fð Þ
X

jxij<kRki

ki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xi

kRki

� 	2
s 1

A; (18)

where we have used the fact that the fraction f of adaptively

coupled oscillators is selected independently of the degree ki

and natural frequency xi. In the mean field approximation,

we sum over all of the oscillators as if they are of each type

and combine the sums with the appropriate weights.

To make the calculation tractable, we take the contin-

uum limit to turn the sums into integrals

R ¼ 1
�k

f

ðkR2k

�kR2k

dx
ðkmax

kmin

dkP kð Þg xð Þk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

kR2k

� 	2
s0

@

þ 1� fð Þ
ðkRk

�kRk

dx
ðkmax

kmin

dkP kð Þg xð Þk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

kRk

� 	2
s 1

A:
(19)

In the continuum limit, instead of summing the individual xi

and ki, we integrate with the appropriate distributions (gðxÞ
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and P(k), respectively). Because we are treating the case of

uniformly distributed frequencies and Poisson degree distri-

bution, we have gðxÞ ¼ 1=2 between �1 and 1, 0 elsewhere

and PðkÞ ¼ �k
k
e�

�k=k!. First thing we note is that the inte-

grated terms of the internal (dk) integral enter via P(k) or in

the combinations

aI ¼ kR2 (20)

aII ¼ kR: (21)

So we simplify Eq. (19) as

R ¼ fFð�k; kR2Þ þ ð1� f ÞFð�k; kRÞ; (22)

where

F �k; a
� �

¼ 1
�k

ðak

�ak

dx
ðkmax

kmin

dkP kð Þg xð Þk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

ak

� 	2
s

: (23)

We note immediately that if R ¼ 0 then a ¼ 0 which brings

the boundaries of integration to 0 and trivially fulfills the con-

dition. Therefore, R¼ 0 is always a solution, though it is not

necessarily always stable. Solving this integral numerically,

as described in the Appendix, we can find solutions for R and

obtain analytic predictions for all values of f, see Fig. 1.

IV. RESULTS

For all values of f, there are between one and three solu-

tions for R, depending on k as shown in Fig. 1. The one solu-

tion which is always present for all f and all k is R¼ 0 (the

desynchronized phase), as noted above. For all f, we can

define a point kc for which below kc R¼ 0 is the only solu-

tion, but above which the stable phase appears. In the special

case of f¼ 0, only this branch rises from the R¼ 0 branch.

At this point, the zero solution becomes unstable and the

only stable solution is the synchronized solution. For all

other values of f, there is a bifurcation in the branches, as

shown in Fig. 1. Even after the bifurcation point, the

desynchronized state remains stable to small fluctuations as

long as an unstable solution separates it from the synchron-

ized state. Therefore, as k is increased to kc, the system must

transition discontinuously to the new branch. However, this

transition does not occur as soon as the second branch

appears, because the desynchronized phase remains stable to

small fluctuations.

When we use a fixed-point analysis of the solutions, we

find that letting the rhs of Eq. (22) be F(R)

d F Rð Þ � Rð Þ
dR

����
F Rð Þ�R¼0

< 0; (24)

for all solutions in the top branch and zero branch, whenever

a middle branch exists and they are thus stable to infinitesi-

mal fluctuations. The middle-branch, on the other hand, is

always unstable.

Zhang et al.40 found that the unstable branch continues

to exist for all k > kc. When f is decreased, we find that there

is a critical value f �ð�kÞ of coupling below which the unstable

branch ends at some value k�. When k > k�, the zero solu-

tion is not stable at all and the system transitions spontane-

ously, even in the absence of fluctuations.

From our numerical tests, as well as the results in

Ref. 40, it is clear that the desynchronized phase becomes

unstable at a certain value kf which is substantially lower

than k�. Determining where exactly that happens is not

possible in the mean-field approximation because the transi-

tion is driven by fluctuations, which we have neglected.

However, as k increases, the characteristic size of the fluctu-

ations increases and once they are large enough to reach the

unstable branch the system passes over to the synchronized

state. Therefore, as reported in Ref. 40, if the system begins

in the desynchronized state at k¼ 0 and k is adiabatically

increased, at a certain value kf the fluctuations are large

enough to pass the unstable branch and the system transitions

discontinuously to the synchronized state. Likewise, if the

system begins in the synchronized state and k is adiabatically

decreased, the system will remain synchronized until a value

kb (with kb < kf ), at which point it spontaneously desynchro-

nizes. Based on the simulations of networks of size �106

(three orders of magnitude larger than those which are typi-

cally studied), we suggest that the determining factor of the

phase transition is the distance (in order-parameter space)

from the initial branch (synchronized or unsynchronized) to

FIG. 1. Mean-field theory and simulations for partially adaptively coupled networks. The solid and dashed lines are calculated from Eq. (19). The solid lines

are stable according to the derivative test while the dashed lines are unstable. Note that two branches of solutions are clearly visible for f> 0 but that for low f,
the unstable branch does not continue for the entire interval. The symbols are simulation results. The small systematic deviations are characteristic of the

mean-field approximation in networks of medium degree, see, e.g., Ref. 48. (a) Entire extent of hysteresis region, up to the maximal size for f¼ 1. (b) Zoomed

version of (a) showing the details of the backward transition and the smaller hysteresis regions for low f. Simulations are for N¼ 65536 with Dk ¼ 10�4 and
�k ¼ 50.
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the unstable branch. This is similar to the assessment of Zou

et al.49 who analyzed scale-free networks with explosive

synchronization due to correlations between degree and

natural frequency and found that the forward and backward

transitions were due to the size of the basin of stability. In

Fig. 2(a), we have plotted DR, the size of the gap between

the R¼ 0 solution and the unstable branch which describes

the necessary fluctuation size for the forward transition, and

in Fig. 2(b) we show the analogous figure for the backward

transition, based on the distance from the synchronized sta-

ble branch to the unstable branch. For the forward transition,

we show that the same jump size characterizes the transition

for all values of f. The backward transition is more difficult

to evaluate because the numerical fluctuations in the critical

threshold coincide with a quickly varying region of DR, but

the hypothesis that it is the same fluctuation size is consistent

with the mean-field theory and our numerical measurements.

The assumption that there is a critical fluctuation size

Dr, allows us to make a prediction for the dependence of the

hysteresis region size on the fraction of adaptively coupled

nodes f. In Fig. 3, we show how this prediction compares to

our measurements of d ¼ kf � kc. We find that the predic-

tion based on this hypothesis is accurate to within the devia-

tions due to the mean-field approximation, which are �10�3

(cf. Fig. 1(b)).

In conclusion, we have found that in fact there is no criti-

cal coupling for explosive synchronization when it is intro-

duced via the adaptive coupling term as in Ref. 40. Even

before this study, the model of explosive synchronization pre-

sented by Zhang et al.40 was compelling because it required

no particular assumptions on topologies or frequency distri-

butions. This result, namely, that any finite fraction of adapt-

ive coupling induces an explosive transition that is

discontinuous and exhibits hysteresis, establishes the model

of adaptive coupling in the Kuramoto model as a particularly

effective way to describe discontinuous jumps in synchroni-

zation in real-world complex systems.
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APPENDIX: INTEGRATION

There are in fact two well defined regions of integration,

for Equation (23) for k < 1=a and k > 1=a, as shown in

Fig. 4, the total integral can be divided as

FIG. 2. Forward and backward phase

transitions and mean-field description of

distance between. In panels (a) and (b),

we see the predictions of the mean-field

theory for the distance between the ini-

tial state and the unstable state for

initial state (a) desynchronized and (b)

synchronized. For both, the transition

takes place at approximately DR � 0:17

(N¼ 2097152).

FIG. 3. Size of hysteresis region. We define the size of the hysteresis region

as d ¼ kf � kc. We obtain the theory curve by assuming the maximum fluc-

tuation obtainable in either state is Dr ¼ 0:175, which we obtain by fitting

the curves in Fig. 2. Error bars represent standard deviation different size

systems, all with �k ¼ 50. FIG. 4. Division of integration into two regions, as described in Eq. (A1).
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F �k; a
� �

¼ 1
�k

I1 þ I2ð Þ: (A1)

Now, by changing variables to x0 ¼ x=ak and thus

dx ¼ akdx0 we can simplify the bounds and decouple the

terms in the square root to obtain for I1

I1 ¼ a
ð1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x02
p

dx0|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
p=2

ð1=a

kmin

P kð Þk2dk

¼ ap
2

ð1=a

kmin

P kð Þk2dk: (A2)

For I2 the boundaries of x are �1,1 and we get a less

straightforward equation

I2 ¼ a
ðkmax

1=a
P kð Þk2

ð1=ak

�1=ak

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x02
p

dx0
" #

dk

¼ a
ðkmax

1=a
P kð Þk2 1

ak

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

ak

� 	2
s

þ a sin
1

ak

� 	2
4

3
5

dk

¼
ðkmax

1=a
dkP kð Þk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

ak

� 	2
s

þ aka sin
1

ak

� 	0
@

1
A
:

(A3)

In this way, Fð�k; aÞ can be calculated numerically and

then plugged in to Eq. (22) to solve the solutions for all f and

k on any given topology.
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