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Abstract—In many natural networked systems, adaptation is
an essential mechanism of self-organization. Usually, network
elements interact through either interdependent, high coupling
at high coherence, or competitive, low coupling at high co-
herence, adaptive rules. The former rule supports explosive
synchronization, while the latter is associated with continuous
transition. Due to inherent heterogeneity of the real networks,
one has to understand the transition under the mixing of such
adaptive rules. Here, we address this problem from a multilayer
perspective and explore the impact of multiplexing on hysteresis
region associated with explosive transitions in complex networks.

Index Terms—adaptive network, interdependence, competition,
explosive synchronization, bilayer network

I. INTRODUCTION

Synchronization phenomenon underlies normal and unde-

sired dynamics in a broad range of natural and man-made

systems [1]. Usually, such systems, especially biological ones,

possess network organization, in which a large amount of units

interact with each other in a complicated manner [2].

Among the variety of emergent behaviors exhibited by

complex networks, special attention has been paid to the effect

of explosive synchronization (ES) [3]. ES, being a discontin-

uous jump-like transition to coherence, displays properties of

real networked systems, such as seizures of epileptic brain,

failures of power grids, etc. [4]–[6]. From its first discovery

in 2006, it has been thought for a long time that ES originates

from specific microscopic correlation features between the

natural frequency and the unit’s degree in heterogeneous scale-

free (SF) networks [7], [8] or the natural frequencies of

the oscillators and their effective coupling strengths [9]–[11].

Later, Zhang et al. have generalized this conclusion on local

adaptive coupling and manifested that ES requires any rule

suppressing macroscopic coherence of the network [12].

In real adaptive networks, elements do not always share the

same rules of adaptation due to the inherent heterogeneity [13],

[14]. Thus, investigation of mixed adaptive scenarios – inter-

dependence and competition – is necessary for understanding
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the dynamics of realistic networked systems. Recently, Dai

et al. have addressed this problem in the case of monolayer

network [15]. They have demonstrated that a certain fraction

of competitively-coupled units switches the network to con-

tinuous transition.

Recent literature sources indicate that multiplexing may

crucially influence network’s dynamics, specifically to induce

or suppress coherent states [16]–[18] and to support ES [19]–

[22]. In this brief report, we explore how the multiplex ar-

chitecture impacts the boundaries of ES if interdependent and

competitive units coexist within such network. We investigate

this problem using an extensive numerical simulation of a

bilayer Erdős-Rényi graph.

II. NUMERICAL MODEL

We analyze a multiplex (L = 2 layers) network with N =
1000 Kuramoto phase oscillators in each layer and compare it

with a monolayer case (L = 1). A bilayer network’s dynamics

is described by the following system of differential equations:

θ̇i,1 = ωi,1 + λD2→1
i

N∑
j=1

Aij,1 sin(θj,1 − θi,1),

θ̇i,2 = ωi,2 + λD1→2
i

N∑
j=1

Aij,2 sin(θj,2 − θi,2),

(1)

where subscripts 1 and 2 correspond to layer-1 and its replica,

layer-2, respectively. In a bilayer case, D2→1
i and D1→2

i define

the rule of interlayer adaptation, so that it is controlled by the

local coherence of the replica unit from the opposite layer.

For an interdependent fraction f we define D2→1
i = ri,2 and

D1→2
i = ri,1, while for remaining (competitive) fraction (1−

f) this rule is governed by D2→1
i = 1 − ri,2 and D1→2

i =
1−ri,1. The adjacency matrices Ai,j,{1,2} define Erdős-Rényi

graphs with 〈ki,{1,2}〉 = 12.

To evaluate phase coherence within network layers we use

averaged global order parameter:

R1,2 =
1

N(tmax − ttr)

tmax∑
t=ttr

∣∣∣∣ N∑
j=1

eiθj,{1,2}(t)
∣∣∣∣, (2)
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where tmax = 1.5 × 106 iterations and ttr = 1.2 × 106

iterations are maximal simulation time and duration of the

transient period presented in the number of iterations.

III. RESULTS

We witness the expanding of hysteresis area on the param-

eter plane (f, λ) in the case of a bilayer network (L = 2)

opposed to a monolayer model (L = 1) Fig. 1a. Specifically,

one can see that the boundaries of both forward (solid lines)

and backward transition (dashed lines) are shifted to higher

values of the coupling strength λ in bilayer model. Despite

that, the width of the hysteresis area does not experience

a considerable growth due to to multiplexing for relatively

small-sized competitive fractions (f > 0.8 in Fig. 1b). How-

ever, multiplexing makes it possible to achieve ES for larger

size of competitive populations compared with a single-layer

problem.
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Fig. 1. (a) Hysteresis areas on the parameter plane (f, λ) in the case of
monolayer (L = 1, red), and bilayer (L = 2, blue) networks. Here, solid
and dashed lines indicate approximate boundaries of forward and backward
transitions. (b) Corresponding hysteresis width d versus f for mono- (red line)
and bilayer (blue line) networks.

IV. CONCLUSIONS

In this brief report, we evidence that the multiplexing of

complex network with mixed adaptive rules expands the area

of hysteresis, a key feature of ES. Moreover, we achieve the

shifting of ES thresholds to stronger couplings and facilitated

ES for a larger size of competitive population in the multiplex

bilayer network.
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