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 1 

Abstract  
Seizure prediction is the grand challenge of epileptology. Yet, effort was devoted to 

prediction of focal seizures, while generalized seizures were regarded as stochastic 

events. Long lasting LFP recordings containing several hundred generalized spike and 

wave discharges (SWDs), acquired at eight locations in the cortico-thalamic system of 

absence epileptic rats, were iteratively analyzed in all possible combinations of either two 

or three recording sites, by a wavelet-based algorithm, calculating the product of the 

wavelet-energy signaling increases in synchronicity. Sensitivity and false alarm rate of 

prediction were compared between various combinations and wavelet spectra of true- and 

false positive predictions were fed to a random forest machine learning algorithm to further 

differentiate between them. Wavelet analysis of intracortical and cortico-thalamic LFP 

traces showed a significantly smaller number of false alarms compared intrathalamic 

combinations, while predictions based on recordings in layer 4, 5 and 6 of the 

somatosensory-cortex significantly outreached all other combinations in terms of prediction 

sensitivity. In 24-hours out-of-sample recordings of 9 GAERS, containing diurnal 

fluctuations of SWD occurrence, classification of true and false positives by the trained 

random forest further reduced the false alarm rate by 71%, although at some tradeoff 

between false alarms and sensitivity of prediction, as reflected in relatively low F1-score 

values. Results provide support for the cortical-focus theory of absence epilepsy and allow 

the conclusion that SWDs are predictable to some degree. The latter paves the way for the 

development of closed-loop SWD prediction-prevention systems. Suggestions for a 

possible translation to human data are outlined.   

 2 

Significance statement  3 

Seizure prediction was declared the grand challenge of epileptology. While most effort was 4 

devoted to the prediction of focal seizures, generalized seizures were regarded as stochastic 5 

events. Results of this study demonstrate that above chance prediction of generalized spike 6 

and wave discharges (SWDs) is possible in long lasting, pseudoprospective 24 hours 7 

recordings of absence epileptic rats, by means of wavelet analysis of LFP traces acquired 8 

near the proposed cortical initiation network in S1 and further classification of true and false 9 

positive detections by a trained random forest machine learning algorithm. Moreover, as 10 

lower SWD prediction performance was achieved by analysis of LFP traces distant to S1, the 11 

study provides evidence supporting the cortical focus theory of absence epilepsy. 12 

 13 
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Keywords: random forest, artificial neuronal network, absence epilepsy, GAERS, 14 

somatosensory cortex, spike and wave discharges   15 

1. Introduction 16 

Epilepsy is a neurological disorder characterized by infrequent, short lasting periods of either 17 

local or generalized, hypersynchronous brain activity which can be recorded in the 18 

electroencephalogram. Depending on the type and nature of these seizures they either go 19 

along with a loss of behavioral control in the form of tonic or clonic convulsions and/or with a 20 

loss of consciousness. As a majority of patients diagnosed with epilepsy report the 21 

uncertainty of when a seizure attack will happen to them as one of the most disabling 22 

aspects of the disease, seizure prediction was declared the grand challenge of epileptology 23 

(Seizure Gauge Challenge 2017; 2016 Community Survey of Epilepsy Innovation Institute 24 

(Ei2) 2016; Kiral-Kornek et al. 2018).       25 

At present, most effort in the development of seizure prediction algorithms has been devoted 26 

to the prediction of focal seizures, in which, a local group of abnormally discharging neurons 27 

is assumed to gradually recruit a critical mass of neurons during a putative pre-seizure state. 28 

Results on seizure prediction performance are quite variable, with multi-variable methods 29 

taking measures of synchronization between brain structures into account usually 30 

outperforming uni-variable methods (Mormann et al. 2007). Part of this variability can be 31 

attributed to methodological shortcomings, and a list of criteria based on which prediction 32 

performance should be evaluated was established to guide good scientific practice 33 

(Mormann et al. 2007). Criteria include evaluation of prediction performance based on 34 

unselected continuous data, in-sample and out-of-sample testing with unseen (pseudo) 35 

prospective data, and evaluation with rigorous and solid statistical methods like Monte Carlo 36 

surrogate statistics to test prediction performance against chance level prediction (Mormann 37 

et al. 2007; Kuhlmann et al. 2018).    38 

More recently developed algorithms evaluated against these criteria, employed machine 39 

learning or deep learning approaches, and were found to achieve above chance prediction 40 

(Khan et al. 2018; Eberlein et al. 2019; Kiral-Kornek et al. 2018). Both are feature extraction 41 

methods that have been proven successful in a number of pattern recognition tasks, like 42 

image and speech recognition in medical diagnosis, genomics, translation or robotics (Walter 43 

et al. 2019; Ratner 2015; Daily et al. 2017).  44 

Comparatively little effort has been devoted to the prediction of generalized seizures, as they 45 

have long been regarded as stochastic events (Lopes Da Silva et al. 2003). In two validated 46 

genetic rat model of absence epilepsy (rats of the WAG/Rij strain and Genetic Absence 47 

Epilepsy Rats from Strasbourg (GAERS)), characterized by generalized spike and wave 48 

discharges (SWDs) and a concomitant decrease in the level of consciousness  (Depaulis and 49 
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Charpier 2018; van Luijtelaar and Zobeiri 2014), several studies reported the presence of 50 

pre-ictal changes in the corticothalamic system, that might be useful features for SWD 51 

prediction (Polack et al. 2007; Sorokin et al. 2016; Pinault et al. 2001; van Luijtelaar et al. 52 

2011; Lüttjohann and van Luijtelaar 2012). A first proof of principle for the predictability of 53 

SWDs was provided by Maksimenko et al. (2017). To achieve a measure for synchronization 54 

signaling SWD initiation, these authors calculated the product of the wavelet energy 55 

assessed in local field potential (LFP) recordings taken at three locations in the cortico-56 

thalamic system of WAG/Rij rats. While this algorithm already reached a high sensitivity of 57 

prediction, it still suffered from a large amount of false alarms, strongly reducing the 58 

specificity of prediction.  59 

The current study was designed to improve SWD prediction performance through (i) a 60 

systematic variation of the multiple recording sites of SWDs in the cortico-thalamic system 61 

and relation to SWD prediction sensitivity and false alarm rate, (ii) a thorough statistical 62 

comparison of wavelet spectra corresponding to true positive- and false positive detections, 63 

and (iii) training of a machine learning algorithm (random forest) to further differentiate 64 

between both types of detections.  65 

In line with the criteria of good scientific practice mentioned above, we assessed algorithm 66 

performance in long lasting, non-selected, pseudo-prospective 24 hours recordings, taking 67 

potential diurnal variations of seizure occurrence into account  (Smyk and van Luijtelaar 68 

2020), we incorporated in-sample and out-of-sample recordings (from two different genetic 69 

rat models of absence epilepsy, rats of the WAG-Rij strain and GAERS), and we statistically 70 

verified the results using surrogate statistics.  71 

 72 

2. Material and Methods 73 

2.1 Animals, surgery and acquisition of LFP recordings 74 

LFP recordings of a total of 22 male WAG/Rij rats and 15 male GAERS, two well validated 75 

genetic rat models of absence epilepsy were analyzed. As both strains show several 76 

hundred spontaneously occurring SWDs per day (Depaulis and van Luijtelaar 2006), the data 77 

are potentially suited for training and evaluation of machine learning algorithms requiring a 78 

large amount of training data.  79 

Recordings of 16 WAG/Rij rats were taken from a previously published data set analyzing 80 

pre-ictal network interactions in the cortico-thalamic system (Lüttjohann and van Luijtelaar 81 

2012, 2015). In these rats, LFP signals were simultaneously measured in freely moving 82 

animals in eight different brain structures within the cortico-thalamic system including the 83 

posterior thalamic nucleus (Po), the ventral-postero-medial thalamic nucleus (VPM), caudal 84 

and rostral part of reticular thalamic nucleus (cRTN and rRTN), anterior thalamic nucleus 85 
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(ATN) as well as layer IV, V, VI of the somatosensory cortex (S1) (coordinates are specified 86 

in Lüttjohann & van Luijtelaar, 2012). LFP signals were gathered at a constant sample rate of 87 

2048 Hz and filtered between 1 Hz high pass (HP) and 100 Hz (LP) low pass as well as by a 88 

50 Hz notch filter, over a period of at least 4 hours. A WINDAQ-recording-system was used 89 

to digitize EEG signals (DATAQ-Instruments Inc., Akron, OH, USA). Rat movement was 90 

registered via a PIR detector (RK2000DPC LuNAR PR Ceiling Mount, Rokonet RISCO 91 

Group S.A., Drogenbos, BE). In additional 6 WAG/Rij rats LFP recordings were acquired in 92 

layer Va, Vb and layer VI of the secondary motor cortex (A/P +2.7 mm, M/L +1.2 mm, d -2.5, 93 

2.6, 2.8 mm, respectively; coordinates relative to bregma). Coordinates were determined 94 

relatively to bregma and according to the stereotactic atlas of Paxinos and Watson (1998)). 95 

 96 

LFP recordings of GAERS were acquired in the Münster lab. Animals aged 3 to 9 months, 97 

born and raised at the Institute of Physiology I, Westfälische Wilhelms-University Münster. 98 

underwent stereotactic surgery under pentobarbital anesthesia (Narcoren, 50 mg/kg; 99 

Boehringer Ingelheim Vetmedica GmbH, Ingeheim am Rhein, Germany) for the implantation 100 

of recording electrodes (stainless steel, insolated with polyamide, impedance 0.1 MΩ; 101 

diameter 0.005 inch; Plastics One, Roanoke, USA) in the deep layer (IV, V and VI) of S1 102 

(A/P: -1.8, M/L: -3.6, d:-2.6, -2.9 -3.2). Reference and a ground electrode were placed on top 103 

of the cerebellum. Carprofen (5mg/kg) was administered to the rats 30 minutes before as 104 

well as 24 and 48 hours after surgery to ensure intra and postoperative analgesia.  105 

Two weeks after surgery animals were placed in a 43x28x42 cm plexiglas recording box, 106 

equipped with bedding material, cage enrichment (Enviro-Dri) and free excess to food and 107 

water. Rats were connected to recording leads connected to a swivel commutator allowing 108 

LFP recordings in freely moving animals. LFP signals were amplified by an amplifier (TD 109 

90087, Radboud University Nijmegen, Electronic Research Group) filtered between 1 Hz 110 

(HP) and 100 Hz (LP) as well as by a 50 Hz notch filter, and digitalized with a constant 111 

sample rate of 500 Hz by WINDAQ-recording-system (DATAQ-Instruments Inc., Akron, OH, 112 

USA). In addition, a PIR (Passive Infrared Registration, RK2000DPC LuNAR PR Ceiling 113 

Mount, Rokonet RISCO Group S.A., Drogenbos, BE) registered rat movements. GAERS 114 

were recorded for a total of 24 hours. 115 

All experimental procedures were carried out according to the guidelines and regulations of 116 

the council of the European Union (Directive 2010/63/EU) and were approved by local 117 

authorities. 118 

  119 

2.2 Data processing and statistics 120 

2.2.1. Wavelet-based SWD prediction by the Maksimenko et al (2017) algorithm – 121 

comparison between combinations of recording sites in the cortico-thalamic system. 122 
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In an attempt to determine the optimal recording sites for SWD prediction and to gain 123 

additional insight into network interactions in the cortico-thalamic system in relation to the 124 

generation of SWD, we assessed SWD prediction performance in all possible combinations 125 

of two and three  different recording sites in the cortico-thalamic system (Table I) using the 126 

algorithm previously published by Maximenko et al (2017). 127 

 128 

For SWD prediction, the Maksimenko et al (2017) algorithm determines in each LFP trace, 129 

the mean wavelet energy within a time window of 500 ms shifting along the complete LFP 130 

trace sample by sample. In each trace (i) and at each time step (t), the wavelet energy (W) 131 

within the frequency range of 5-10 Hz corresponding to the precursor (W(5-10 Hz)(t)) is 132 

calculated using wavelet transformation with a modified Morlet mother function (Maksimenko 133 

et al. 2017; van Luijtelaar et al. 2016). This energy obtained in each trace is multiplied to 134 

determine the occurrence of cortico-thalamic synchronization at each moment in time (W(5-10 135 

Hz)(t) = W1(5-10 Hz)(t) X W2(5-10 Hz)(t) X W3(5-10 Hz)(t)). Moreover, wavelet energy is calculated and 136 

multiplied in each channel for a frequency range of 3-5 Hz in accordance to the light slow 137 

wave sleep (W(3-5 Hz)(t) = W1(3-5 Hz)(t) X W2(3-5 Hz) (t) X W3(3-5 Hz) (t)) and within a frequency 138 

range of 7-20 Hz representing sleep spindles (W(7-20 Hz)(t) = W1(7-20 Hz) (t) X W2(7-20 Hz)(t) X 139 

W3(7-20 Hz)(t)) (Figure 4A). 140 

Decision on whether a SWD precursor is present is based on three criteria:  141 

1. Energy of W(5-10 Hz)(t) needs to exceed an individualized specific threshold. 142 

2. Energy of W(5-10 Hz)(t) must exceed energy of W(3-5 Hz)(t)  143 

3. Energy of W(5-10 Hz)(t) must exceed energy of W(7-20 Hz)(t) 144 

 145 

For determination of optimal recording sites for SWD prediction, LFP recordings (duration 4 146 

hours), simultaneously obtained within the cortico-thalamic system in GAERS and WAG/Rij 147 

rats, were fed into the wavelet-based SWD prediction algorithm of Maksimenko et al. (2017), 148 

testing data from the various recordings sites in all possible combinations (Table I). For 149 

WAG/Rij rats, a total number of 57 combinations composed of LFP recordings from three 150 

recording sites and 28 combinations, composed of LFP recordings from two recording sites 151 

(see Table I), were presented to the algorithm. For GAERS, data from three recording sites 152 

in layers IV, V and VI of S1 were used. Each combination of recording sites can be found in 153 

Table I; ‘C’,’T’,’M’ globally refers to recording sites in somatosensory cortex (S1), thalamus 154 

and secondary motor cortex, respectively.    155 

 156 

Since SWD prediction quality depends on the above mentioned individualized threshold, 157 

SWD prediction performance of each recording site combination was determined for a total 158 
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of 14 fixed threshold values ranging from 0.1 to 0.75 for all combinations of three recording 159 

sites, and a total of 16 fixed threshold values ranging from 0.005 to 0.04 for all combinations 160 

composed of two recording sites. Of note, the difference in magnitude in the threshold values 161 

for two and three recording sites is attributed to the fact that detection relies on the product of 162 

either two or three wavelet energy values (see above). For prediction based on two versus 163 

three recording sites, the outer threshold levels (minimum and maximum) correspond to 164 

saturated levels of either sensitivity or false alarm rates for all tested combinations. 165 

 166 

Detections of the algorithm occurring within a 1s pre-ictal period before SWD onset were 167 

regarded as true positives, while detections at interictal timepoints were regarded as false 168 

positives. SWD onset was determined according to the criteria outlined by van Luijtelaar & 169 

Coenen (1986), taking the peak of the first spike of twice the amplitude of the background 170 

EEG as a reference to mark the onset of the SWD (Figure 1). In case of differences in spike 171 

timing between recording sites, notably occurring in the range of milliseconds (Lüttjohann 172 

and van Luijtelaar 2012), the peak of the first spike earliest in time was taken as SWD onset. 173 

 174 

For each combination of recording sites, and for each of the threshold values, the sensitivity 175 

(Sensitivity = number of correctly predicted SWDs / (number of correctly predicted SWDs + 176 

number of unpredicted SWDs) × 100%) of SWD prediction as well as the false alarm rate 177 

were determined.  178 

Linear regression analysis (Pearson correlation) was used to determine the degree of 179 

interdependence between the sensitivity of prediction and false alarm rate. 180 

Statistical comparison of sensitivity and false alarm rate between different combinations of 181 

recording sites were performed using ANOVA with sensitivity or false alarm rate as 182 

dependent variable, combination of recording sites as between subject factor 1, number or 183 

recording sites (2, 3) as between subject factor 2, threshold as covariate 1 and false alarm 184 

rate or sensitivity as covariate 2. 185 

 186 

To avoid multiple comparison problems all combinations of recording sites were grouped for 187 

post-hoc analyses as follows. 1: two intracortical recording sites in S1 (CC), 2: one cortical 188 

recording site in S1 and one thalamic recording site (CT), 3: two intrathalamic recording sites 189 

(TT), 4: three intracortical recording sites in S1 (CCC), 5: two cortical recording sites in S1 190 

and one thalamic recording site (CCT), 6: one cortical recording site in S1 and two thalamic 191 

recording sites (CTT), 7: three intrathalamic recording sites (TTT) and 8: three intracortical 192 
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recording sites in the secondary motor cortex (MCCC). Post hoc analyses included: ANOVA 193 

with sensitivity or false alarm rate as dependent variable, group of channel combinations 194 

(CC, TC, TT, CCC, CCT, CTT, TTT, MCCC) as between subject factor 1, number of 195 

recording sites (2, 3) as between subject factor 2, threshold as covariate 1 and false alarm 196 

rate or sensitivity as covariate 2. 197 

 198 

All statistical analyses were performed using IBM SPSS version 25. Data are expressed as 199 

the arithmetic mean values ± standard error of the mean (S.E.M.). Differences were 200 

considered statistically significant when p ≤ 0.05 (*), p ≤ 0.01 (**) and p ≤ 0.001 (***).  201 

 202 

2.2.2 Comparison of wavelet spectra corresponding to true positive- and false positive 203 

predictions. 204 

Irrespective of the combination of recording sites, the Maksimenko et al (2017) algorithm 205 

results in relatively high false alarm rates. Therefore, we determined pre-existing differences 206 

in spectra corresponding to either true positive- or false positive predictions. Wavelet spectra 207 

of all true positive detections, and a total number of 50 randomly selected false positive 208 

detections, as identified by the algorithm of Maksimenko et al. (2017), were calculated from 209 

LFP traces acquired in the deep layer (IV, V and VI) of S1 in GAERS and WAG/Rij rats 210 

(Figure 3). Timepoint zero indicates the timepoint of precursor detection at the end of a 500 211 

ms analysis window (ranging from -0.5 to 0), in which either the true positive precursor or the 212 

false positive was detected. 213 

Average wavelet energy within different frequency bands was statistically compared between 214 

true and false detections using repeated measures ANOVA with average wavelet energy as 215 

dependent variable, type of detection (true positive, false positive) as within subjects factor 1, 216 

frequency band (W(5-10 Hz), W(3-5 Hz) and W(7-20 Hz)) as within subjects factor 2 and rat strain 217 

(GAERS, WAG/Rij rats) as between subject factor.   218 

 219 

2.2.3 Random forest machine learning algorithm for differentiation between true positive - 220 

and false positive predictions 221 

In an attempt to further differentiate between true and false positive predictions, we trained a 222 

random forest machine learning algorithm. The wavelet energy extracted for true and false 223 

detections was fed into a random forest (Birjandtalab et al. 2017) consisting of a total of 1000 224 

decision trees (Figure 4A). Different numbers of trees were experimentally varied to 225 

investigate the effect of forest size on classification performance (Figure 4E). For each true 226 

and false positive prediction produced by the Maksimenko et al (2017) algorithm, 9 wavelet 227 
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energy values corresponding to the values assessed in the three frequency bands (W(5-10 Hz), 228 

W(3-5 Hz) and W(7-20 Hz)) at three different recording sites, were presented to the algorithm to 229 

extract features for classification (Figure 4A). Majority voting of the different trees in the 230 

random forest yielded final classification (Figure 4A). 231 

 232 

Training of the random forest was performed with spectra obtained in 70% of all recorded 233 

data in 6 WAG/Rij rats and 6 GAERS, and classification performance was evaluated on the 234 

remaining 30% of unseen data of the same rats (i.e. in-sample testing). As epileptic seizures 235 

or pre-ictal events are underrepresented compared to the vast number of inter-ictal 236 

fragments or false positive predictions, a random undersampling approach was taken in a 237 

first step in order to create a balanced training set and thereby ensure balanced learning 238 

(Kubat et al. 1997). All true positive detections were fed into the algorithm, matched by an 239 

equal number of randomly selected false positive detections. In this way a total of 100 240 

random forest were trained. Of note, each random forest was fed with a different set of false 241 

positive detections. Obtained results correspond to the performance of a single trained 242 

random forest, which was found to reach an average performance of these 100 trained trees. 243 

 244 

In order to allow an unbiased comparison of classification performance of the random forest 245 

between different combinations of recording sites, we adjusted the detection threshold of the 246 

Maksimenko et al algorithm (2017) for each combination to reach a 60% sensitivity of SWD 247 

prediction for the extraction of the time points and wavelet features for training and 248 

evaluation of classification. 249 

 250 

To assess the classification performance of the random forest the balanced accuracy of 251 

classification was calculated as (sensitivity of classification + specificity of classification) / 2), 252 

with specificity = (number of false positives predicted as false positives / (number of false 253 

positives predicted as false positives + number of false positives predicted as true positives)) 254 

* 100% and sensitivity = (number of true positives predicted as true positives / (number of 255 

true positives predicted as true positives + number of true positives predicted as false 256 

positives)) * 100%. Moreover an F1-score defined as F1 = 2 * ((precision * sensitivity) / 257 

(precision + sensitivity)) * 100% was calculated, where precision equals (number of true 258 

positives predicted as true positives / (number of true positives predicted as true positives + 259 

number of false positives predicted as true positives)) * 100%. 260 

Classification performance of the random forest was compared with ANOVA between the 261 

different groups of recording sites in WAG/Rij rats: 1. Recordings in layers V and VI of S1,  262 

referred to as “CC” (n=145); 2. Recordings in layers IV, V and VI of S1, referred to as “CCC” 263 

(n=161); 3. Recordings in layers IV, VI of S1 and VPM,    referred to as “CCT” (n=161); 4. 264 
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Recordings in layer VI of S1, VPM and RTN, referred to as “CTT” (n=161); 5. Recordings in 265 

VPM, cRTN and Po, referred to as “TTT” (n=145), 6. recordings in layer Va, Vb and VI of 266 

secondary motor cortex, referred to as “MCCC” (n=161). In addition, classification 267 

performance was assessed in recordings from layers IV, V and VI of S1 in GAERS, referred 268 

to as “GCCC” (n=145, n=161, n=1844) and compared to results achieved in WAG/Rij rats 269 

using ANOVA. Furthermore, classification performance of each group was evaluated against 270 

chance level using surrogate statistics (see below). 271 

 272 

2.2.4 Probing the random forest machine learning algorithm for maximal SWD prediction 273 

performance  274 

Next, the random forest machine learning combined with the Maximenko et al. (2017) 275 

algorithm were probed for maximal prediction performance of SWD. Wavelet features for true 276 

and false predictions were extracted in LFP recordings obtained in the deep layers (IV, V and 277 

VI) of S1 of 6 GAERS at a threshold value reaching a 90% sensitivity for SWD prediction, 278 

and were used for training and in-sample testing as described above. Moreover, 279 

performance of random-forests trained in this approach were assessed in unseen 24 hours 280 

recordings from a separate group of 9 GAERS rats (out-of-sample testing).  281 

 282 

For in-sample testing and out-of sample testing, performance was statistically evaluated 283 

against chance level prediction using surrogate statistics. To this end, training data of true 284 

and false detections were randomly assigned to the two classes (total of 1000 285 

randomizations), and for each randomization the average balanced accuracy achieved in the 286 

unseen data was determined and displayed in a histogram. In case the achieved balanced 287 

accuracy computed for the random forest trained with the real (i.e. non-randomized) training 288 

data was positioned above the 95th quantile of the histogram, algorithm performance was 289 

regarded as significant above chance level. 290 

 291 

Lastly, as classification performance of the random forest was found to be reduced in the 292 

out-of-sample testing, likely resulting from an insufficient amount of false positive predictions 293 

presented to the algorithm during training, a separate set of random forests (n=100) was 294 

trained in a (moderate) oversampling approach. A multiple (4) of all true positive predictions 295 

and a matched number of randomly selected false positive predictions, derived in LFP 296 

recordings of the deep layer (IV, V and VI) of S1 in 6 GAERS at a threshold value of 90%, 297 

were used to train the random forests. Determination of an appropriate oversampling factor 298 

was performed by comparison of classification performances achieved at different 299 

oversampling factors, ranging between 2 to 7. Higher rates of oversampling were omitted to 300 
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avoid overtraining. As for the under-sampling approach, classification performance was 301 

assessed in unseen 24 hours recordings from a separate group of 9 GAERS rats (out-of-302 

sample testing) and tested against chance level using surrogate statistics (see above).   303 

 304 

Performance presented in the results corresponds to the performance of a single trained 305 

random forest, reaching an average performance of these 100 trained trees. 306 

 307 

2.3 Histology 308 

At the end of the recordings, a direct current (9 V, 25 μA, 2 s duration) was pathed though 309 

each electrode to create an electrolytic lesion at the location of the tip of the electrode. 310 

Animals were killed with an intraperitoneal injection of pentobarbital (Narcoren, 150 mg/kg; 311 

Merial GmbH, Münster, Germany). The brain was quickly removed and placed in a 4% 312 

paraformaldehyde (PFA) solution for at least 24 h. Brains were fixated in a 30% sucrose 313 

solution and cut into 60 μm slices with the aid of a microtome. Slices were mounted on 314 

microscope slides, stained with cresyl violet, and inspected under a light-microscope (dnt, 315 

DigiMicro Profi) for identification of the microlesions. Recording sites were extrapolated from 316 

the center of the lesion relative to cortical depth and neighboring cortical layers. Only 317 

recordings from verified recording positions were included in the analysis. 318 

 319 

2.4 Code Accessibility 320 

The random forest algorithm was programmed in Python and requires previous installation of 321 

Python for execution. The code of the random forest algorithm is available as Extended Data. 322 

 323 

3. Results 324 

3.1 Electrophysiological characteristics of SWDs in GAERS and WAG/Rij rats  325 

Exemplary LFP recordings of GAERS and WAG/Rij rats are displayed in Figure 1. LFP 326 

signals of GAERS, recorded for 24 hours, displayed frequent (average of 17 per hour) SWDs 327 

of 10 to 30 seconds duration at a main frequency of 5–7 Hz. Occurrence of SWDs showed 328 

the well documented diurnal variation with highest rates of occurrence at the beginning of the 329 

dark phase and lowest rates of occurrence at beginning of the light phase (Smyk and van 330 

Luijtelaar 2020). LFP signals in WAG/Rij rats were acquired during four hours of the dark 331 

phase. WAG/Rij rats showed on average 10 SWDs per hour, with a mean duration of 7 s and 332 

a slightly higher internal frequency of 8–10 Hz. Spikes in thalamus typically possessed a 333 

smaller amplitude (500 vs 700 μV) and broader form, with a reversed polarity as compared to 334 

those in cortex. All differences of SWD morphology between strains (i.e. different internal 335 
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frequency) and recording sites (i.e. amplitude, polarity and sharpness of spike) are in 336 

accordance with previously published data (Sitnikova and van Luijtelaar 2007; Lüttjohann 337 

and van Luijtelaar 2012; Akman et al. 2010).    338 

 339 

- place figure 1 about here – 340 

- place table I about here – 341 

 342 

 343 

3.2 Influence of cortico-thalamic recording sites on SWD prediction performance  344 

In a first set of experiments, we sought to identify the influence of LFP recording sites on 345 

SWD prediction performance. LFP recordings were simultaneously obtained at multiple sites 346 

in the cortico-thalamic system of WAG/Rij rats, specifically in the deep layers (IV, V and VI) 347 

of the somatosensory cortex (S1), secondary motor cortex, and thalamic nuclei VPM, PO, 348 

ATN, rostral and caudal RTN.  349 

Recordings from either two or three sites in all possible combinations (yielding a total of 85 350 

combinations) were fed into the wavelet-based algorithm (Maksimenko et al. 2017). 351 

Sensitivity and false alarm rate of the algorithm were compared in these 85 combinations 352 

(Table I). For post-hoc analysis combinations were grouped as either ‘CC’ (two intracortical 353 

recording sites in S1), ‘CT’ (one cortical recording site in S1 and one thalamic recording site), 354 

‘TT’ (two intrathalamic recording sites, ‘CCC’ (three intracortical recording sites in S1), ‘CCT’ 355 

(two cortical recording sites in S1 and one thalamic recording site), ‘CTT’ (one cortical 356 

recording site in S1 and two thalamic recording sites), ‘TTT’  (three intrathalamic recording 357 

sites) or ‘MCCC’ (three intracortical recording sites in the secondary motor cortex), 358 

respectively. Moreover, SWD prediction performance of each combination of recording sites 359 

was determined at multiple threshold values employed for precursor detection. As ANOVA 360 

revealed a significant influence of threshold on both sensitivity of prediction 361 

(F(1,10980)=3995, p<0.001, R2=0.26) (the higher the threshold, the lower the sensitivity) and 362 

false alarm rate (F(1,10980)=10.7, p<0.05, R2=0.1) (the higher the threshold, the lower the 363 

false alarm rate), threshold was taken as a covariate factor into statistical analysis in order to 364 

allow comparison of prediction performance between different combinations of recording 365 

sites irrespective of any possible threshold effects. 366 

 367 

ANOVA revealed significant differences in both the achieved sensitivity of prediction as well 368 

as the produced false alarm rate between the different combinations of recording sites 369 

(Fsenitivity(84, 10980) = 13.47, p<0.001, R2=0.37; FnFP(84, 10980) = 2.47, p<0.001, R2=0.1) 370 

(Figure 2, Table I). 371 
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- place figure 2 about here - 372 

On average, predictions based on three recording sites reached significantly higher 373 

sensitivities (Figure 2A, Table I) and lower false alarm rates (Figure 2C, Table I) as 374 

compared to predictions based on two recording sites (Fsenitivity (1, 10980) = 935.7, p<0.001, 375 

R2=0.07; FnFP (1, 10980) = 116.3, p<0.001, R2=0.02).  376 

Regarding the false alarm rate (Figure 2C, Table I) predictions based on three intracortical 377 

recordings in S1 (CCC) and predictions based on cortico-thalamic recording sites (CCT and 378 

CTT) showed a significantly smaller number of false alarms compared to predictions based 379 

on three intrathalamic recordings (TTT) (all p<0.001) (average false alarm rate of CCC = 380 

85.2 ± 10.6, CTT= 94.7 ± 3.0, CCT= 70.6 ± 3.5  and TTT=110.2 ± 5.4). Predictions based on 381 

three intracortical recordings acquired in the secondary motor cortex (MCCC), on the other 382 

hand, resulted in significantly more false alarms (average false alarm rate MCCC = 129.8 ± 383 

17.9) as compared to predictions based on CCC, CCT and CTT combinations (all p<0.05). 384 

Highest false alarm rates with an average of 221.1 ± 6.2 were found for predictions based on 385 

two intracortical recordings acquired in S1 (all p < 0.001). 386 

Regarding the sensitivity of SWD prediction, predictions based on recordings in layer IV, V, 387 

and VI of S1 significantly outreached all other combinations with an average sensitivity of 388 

61.7 ± 1.5 % (all p<0.001) (Figure 2A, Table I).  389 

Among the remaining combinations with three recording sites, MCCC, TTT and CTT showed 390 

significantly lower sensitivities compared to predictions based on two recording sites in S1 391 

combined with one thalamic site (CCT) (all p < 0.001) (Figure 2A, B, Table I). Lowest 392 

sensitivity was reached for predictions on two thalamic recordings (average sensitivity TT = 393 

13.7 ± 0.8%), while predictions based on two cortical recording sites in S1 reached a medium 394 

sensitivity of 33.0 ± 0.9 % (Figure 2A, B, Table I).   395 

 396 

To estimate the degree of interdependence between achieved sensitivity of SWD prediction 397 

and resulting false alarm rate regression analysis was performed. Analysis revealed a 398 

significant negative correlation between both indicators of SWD prediction performance  (r = -399 

0.716; p<0.001) (Figure 2E), indicating that a higher SWD prediction sensitivity, achieved for 400 

a given combination of recording sites, does not occur at the trade-off of a high false alarm 401 

rate. The same clusters as described above could be identified in the regression pattern 402 

including higher false alarm rates and lower sensitivities for predictions on two recording 403 

sides within the cortico-thalamic system, highest false alarm rate and medium sensitivity for 404 

predictions based of two intracortical recordings in S1, medium sensitivity and medium false 405 

alarm rate for predictions based on three intracortical recordings in M2 and highest sensitivity 406 

with a low false alarm rate for prediction based on three intracortical recordings in S1 (Figure 407 
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2). Of note, irrespective of recording site combination, algorithm performance remained at a 408 

low level including only moderate sensitivities of SWD prediction and high false alarm rates.  409 

 410 

3.3 Out-of-sample testing: Comparison between rat strains 411 

Both, GAERS and WAG/Rij rats are well validated genetic rat models of absence epilepsy 412 

sharing genetic, physiological and behavioral characteristics (Depaulis and van Luijtelaar 413 

2006), although slight, but significant differences in electrophysiological parameters of SWDs 414 

have been reported (Akman et al. 2010). Therefore, we evaluated the prediction performance 415 

of the Maksimenko et al. (2017) algorithm also in GAERS. Prediction performance was 416 

assessed in 4 hours lasting LFP recordings, obtained in layers IV, V and VI of S1 in GAERS 417 

and WAG/Rij rats, and, was compared between the two strains. Significant differences 418 

between rat strains were revealed for the produced false alarm rate, with significantly more 419 

false alarms in WAG/Rij rats compared to GAERS (p<0.001) (Figure 3B). On the other hand, 420 

no significant differences were seen between GAERS and WAG/Rij rats for the sensitivity of 421 

prediction (p>0.05) (Figure 3A). 422 

 423 

3.4 Comparison of true and false positive detections 424 

Irrespective of the combination of recording sites, the Maksimenko et al (2017) algorithm 425 

resulted in relatively high false alarm rates. Therefore, we determined pre-existing 426 

differences in spectra corresponding to either true positive- or false positive predictions in a 427 

next experimental step.  428 

Figure 3 D and E depict exemplary spectrograms of true and false positive SWD predictions, 429 

respectively. Time point -0.5 to 0 features the analysis window (window size 500 ms) in 430 

which either the true positive precursor or the false positive was detected. The onset of the 431 

SWD is depicted at time point 0.4 seconds on the x-axis (Figure 3C,D). At this point a strong 432 

increase in the product of the wavelet energy can be noted in the main frequency band of the 433 

SWD (i.e. 5-10 Hz). On average, precursor activity around 900 to 300 ms before SWD onset. 434 

 435 

- place figure 3 about here - 436 

 437 

Next, the product of wavelet energy, assessed in the frequency bands W(5-10 Hz), W(3-5 Hz) and 438 

W(7-20 Hz) (Maksimenko et al. 2017), was statistically compared between true and false 439 

positives across the two rat strains. Data revealed significant differences between true and 440 

false positives in the frequency bands W(5-10 Hz) and W(3-5 Hz). False positives possessed a 441 

higher wavelet-energy product as compared to true-positives (all p<0.05). For both frequency 442 
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bands, this difference was significantly more pronounced in GAERS compared to WAG/Rij 443 

rats (F(2,28)=7.3, p<0.05, R2=0.3) (Figure 3 F,G).     444 

 445 

3.5 A random forest machine learning algorithm for improvement of SWD prediction 446 

Since significant differences in the wavelet spectra of true and false positives were revealed, 447 

a random forest machine learning algorithm was trained to differentiate between true positive 448 

and false positive detections. In a first step, a random undersampling approach was used to 449 

create a training data set. Here, true positives detected in 70% of recordings from 6 WAG/Rij 450 

or 6 GAERS rats and an equal amount of randomly selected false positives derived from 451 

70% of recordings in the same rats were used as training data. For in-sample performance 452 

evaluation, the algorithm was confronted with the remaining 30% of unseen data (see 453 

methods section for more details). As in the paragraphs above, classification performance of 454 

the random forest was compared between different combinations of recording sites in 455 

WAG/Rij rats and between rat strains (Figure 4). 456 

- place figure 4 about here - 457 

In WAG/Rij rats, classification performance of the random forest was significantly above 458 

chance level for all combinations of recording sites (average balanced accuracy CCC = 459 

71.5%, CCT = 66,7%, CTT = 63,2%, CC = 62,5%)  (all p<0.05) except for spectra derived 460 

from three intrathalamic recording sites (average balanced accuracy TTT = 56,2%) (p>0.05) 461 

and spectra derived from recordings in layer Va, Vb and VI of the secondary motor cortex 462 

(average balanced accuracy MCCC = 49,9%) (p>0.05) (Figure 4B). Highest classification 463 

accuracies were derived from three intracortical recordings acquired in S1, as was seen 464 

using the Maksimenko algorithm above (all p<0.05).  Classification accuracies for spectra 465 

derived from three intracortical recordings in S1 from GAERS were significantly higher 466 

(balanced accuracy GCCC1841 = 78,8%) compared to those in WAG/Rij rats (balanced 467 

accuracy GCCC1841 = 78,8% vs. balanced accuracy CCC = 71,5%, p<0.05). Of note, this 468 

strain difference could not be attributed to the difference in the amount of training samples 469 

(i.e. 1841 derived from 70% of the six 24 hours recordings of GAERS vs 161 derived from 470 

70% of the six 4 hours recordings of WAG/Rij rats), as a reduction of the training data in 471 

GAERS still resulted in higher classification accuracies than in WAG/Rij rats (balanced 472 

GCCC161 = 73.6% vs balanced accuracy CCC = 71,5%, p<0.05) (Figure 4B). 473 

In order to evaluate if classification accuracy of the random forest depends on the level of 474 

sensitivity achieved by the Maksimenko algorithm, classification performance in GAERS and 475 

WAG/Rij rats achieved at sensitivities of 60% and 90% were compared for spectra derived in 476 

recordings of layer IV, V and VI in S1. In both strains, a small but significant reduction in 477 
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classification accuracy was noted for spectra derived at a 90% sensitivity as compared to 478 

spectra derived at a 60% sensitivity (balanced accuracy CCC = 71.5% vs CCC90% = 63.3% 479 

p<0.001; GCCC1841 = 78.8% vs GCCC90% = 73.1% p<0,001). Of note, classification 480 

accuracies for spectra derived at a sensitivity of 90% significantly exceeded chance level 481 

classification as indicated by surrogate statistics (both p<0.01) (Figure 4B). Moreover, 482 

accuracies gradually increased towards a maximum at around 16 trees (Figure 4E).  483 

For out-of-sample evaluation, the random forest trained on spectra derived from three 484 

intracortical recordings in S1 of GAERS at a sensitivity of 90% was confronted to spectra 485 

derived from 24 hours recordings in a separate group of GAERS (n=9).   486 

Table II depicts the achieved balanced accuracies of each rat as well as the average 487 

confusion matrix, specifying the relative percentage of true positives that had been classified 488 

as such (lower right corner), true positives that had been incorrectly classified as false 489 

positives (lower left corner), false positives correctly classified as such (upper left corner), 490 

and false positives incorrectly classified as true positives (upper right corner). Classification 491 

performance drastically dropped and above chance classification tested by permutation 492 

statistics was only achieved in a single rat (i.e. rat 5, balanced accuracy 59,62%, p<0.05). 493 

 494 

- place Table II about here - 495 

As the low performance of the random forest in the out-of-sample evaluation might be 496 

attributed to random undersampling (i.e. the algorithm was trained with a training set which 497 

does not adequately represent the full spectrum/variance of the false positive spectra), we 498 

next evaluated the performance of an random forest, which was trained in a (moderate) 499 

oversampling approach. In this approach the random forest was trained with four times all 500 

true positive detections and a matched number of randomly selected false positive 501 

detections, derived in three intracortical recordings in S1 of GAERS at a sensitivity of 90% 502 

(see methods for details). Again, for out-of-sample evaluation, the trained random forest was 503 

confronted to spectra derived from 24 hours recordings in a separate group of nine GAERS.   504 

Table III depicts the achieved balanced accuracies of each individual rat as well as the 505 

average confusion matrix.  506 

- place Table III about here - 507 

Taking this (moderate) oversampling approach, the achieved balanced accuracies of the 508 

random forest significantly increased (F(1,8)=26.8, p<0.001, R2=0.7), and above chance 509 

classification could be achieved in all subjects except one (permutation statistics, all but one 510 

p<0.05) (Table III). 511 

Classification of the random forest trained with the (moderate) oversampling approach 512 

resulted in a strong reduction in the false alarm rate. While the Maximenko et al (2017) 513 
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algorithm alone produced an average number of 9388 false alarms within the 24 hours, 514 

sorting of the random forest reduced the false alarm rate by 71,4 ± 2.6%. Reduction of the 515 

false alarm rate, however, occurred at some tradeoff between false alarm rate and 516 

sensitivity. Here, Maksimenko et al (2017) on average correctly predicted 368 out of 409 517 

SWD, while 40 SWD were not detected (corresponding to a sensitivity of 90%). Following 518 

sorting by the random forest, an average of 200 out of 409 SWD were correctly predicted 519 

(corresponding to a sensitivity of 49%). It has to be mentioned, however, that rather large 520 

inter-individual differences occurred in prediction performance using the combined 521 

“Maksimenko et al + random forest” algorithm. Highest performance was seen in a rat in 522 

which 349 out of 520 SWD were correctly predicted (corresponding to a sensitivity of 67%). 523 

 524 

4. Discussion 525 

The current study was designed to improve the prediction of SWDs, a type of generalized 526 

seizures seen in several forms of absence epilepsy (Panayiotopoulos et al. 1992). While 527 

these types of seizures have long been regarded as stochastic events (Lopes Da Silva et al. 528 

2003), a recent study by Maksimenko et al. (2017) aimed at prediction of SWDs through the 529 

use of a dedicated algorithm, which calculates the product of the wavelet energy in LFP 530 

recordings taken at three locations in the cortico-thalamic system of absence epileptic rats. A 531 

drawback was that this algorithm suffered from a large amount of false positive detections. 532 

Therefore, the current study was designed to improve prediction performance, as quantified 533 

by sensitivity, specificity and balanced accuracy of prediction. The rational was to 534 

systematically vary the sites of simultaneous recordings in the cortico-thalamic system, 535 

including somatosensory and motor cortices, rostral and caudal RTN, specific (VPM) and 536 

higher order thalamic nuclei (PO, ATN), in view of their distinct role in initiation, spread and 537 

synchronization of SWDs (Depaulis et al. 2016; Lüttjohann and van Luijtelaar 2015; Crunelli 538 

et al. 2020). Results were iteratively analyzed, in that all possible combinations of the 2-3 539 

simultaneous recording sites were compared by using the algorithm of Maksimenko et al., 540 

(2017). Moreover, a thorough comparison of wavelet spectra corresponding to true and false 541 

positive detections was performed and a random forest machine learning algorithm was 542 

trained to further differentiate between true and false positives. Algorithm performance was 543 

evaluated according to the guidelines of good scientific practice (Mormann et al. 2007; 544 

Kuhlmann et al. 2018) (long lasting, non-selected, pseudo-prospective 24 hours recordings 545 

with both in-sample and out-of-sample periods, evaluation against chance level prediction 546 

using surrogate statistics), and it was found to reduce the false alarm rate by on average 547 

71.4%  548 

 549 

 550 
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4.1 Highest SWD prediction performance is achieved with analysis of LFP signals in 551 

the close proximity of the seizure initiation network in S1  552 

Comparison of a total of 85 combinations of recording sites within the cortico-thalamic 553 

system (Table I), revealed that prediction performance was best when based on analysis of 554 

the wavelet energy of recordings obtained by three recording electrodes within the deep 555 

layers of the somatosensory cortex. SWDs are well known to be generated in the cortico-556 

thalamic system. While the exact interactions between cortex and thalamus are still a matter 557 

of debate,  accumulating evidence indicates that SWDs originate from a local intracortical 558 

initiation network in the peri-oral region of  the somatosensory cortex  (Crunelli et al. 2020; 559 

Jarre et al. 2017; Meeren et al. 2002).  In GAERS, the crucial role of layer V and VI of S1 has 560 

been highlighted, as theses layers were found to contain abnormally (i.e. hyperactively) 561 

discharging neurons, which drove neuronal activity in other cortical layers as well as thalamic 562 

activity (Lüttjohann and Pape 2019; Polack et al. 2007).  These epileptogenic neurons 563 

display activity patterns strikingly similar to the precursor oscillations detected by the 564 

algorithm in the present study, including an increase in activity within up to two seconds 565 

before SWD onset and a firing frequency of around 10 Hz (Polack et al. 2007). Highest 566 

sensitivity of prediction was achieved by the Maksimenko et al (2017) algorithm based on 567 

analysis of wavelet energy in the deep layers of S1 (IV, V, VI), which significantly outreached 568 

all other cortico-thalamic- and intrathalamic combinations of recording sites (Figure 2A). 569 

Moreover, further classification of true and false positive detections by a trained random 570 

forest also reached highest, above chance balanced accuracies for spectra derived in the 571 

deep layers of S1, while classification based on intrathalamic-spectra failed to achieve above 572 

chance balanced accuracies (Figure 4B). These data are in line with the concept of a local 573 

intracortical initiation network in S1 (Meeren et al. 2002; Polack et al. 2007).  574 

Interestingly, prediction performance of the Maksimenko et al. (2017) algorithm significantly 575 

dropped upon reducing the number of simultaneous recordings sites in the deep 576 

somatosensory layers from three to two (Figure 2), further demonstrating the importance of 577 

local intracortical synchronization in S1 for SWD generation. The concurrent increase in the 578 

false alarm rate might indicate a lack of information concerning the generation of other 579 

synchronized oscillations, which might be transmitted to the deep cortical layers by other 580 

subcortical structures (Sitnikova et al. 2009; Depauls et al. 1990).  581 

The sensitivity of SWD prediction based on three simultaneous recordings in S1 also 582 

outreached the one achieved in deep layers of M2. In view of long-range intracortical 583 

connections between S1 and M2, specifically from layer V/VI of S1 to layer V of M2 (Condé 584 

et al. 1995; Zhang and Deschênes 1997; Zakiewicz et al. 2014; Reep and Corwin 1999), the 585 

high SWD prediction performance in S1 compared to M2 suggests that SWD precursor 586 
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activity is a locally restricted cortical phenomenon, at least with regard to the initiation zone in 587 

S1.  588 

Prediction performance of the Maksimenko et al. (2017)-algorithm was found to differ 589 

between the two genetic model strains, in that prediction performance was generally more 590 

accurate and spectra corresponding to true and false positive detections were more 591 

differentiated in GAERS compared to WAG/Rij rats. Differences between the two models and 592 

even between different colonies of the same strain have been described for distinct 593 

electrographic features of the SWDs (Akman et al. 2010; Powell et al. 2014). It is likely that 594 

that the frequency band W(5-10 Hz), employed by the algorithm for precursor detection, better 595 

suits detection of 5-9 Hz oscillations, which have been described to preceded SWDs in 596 

GAERS (Pinault et al. 2001). In WAG/Rij rats, on the other hand, precursor activity has been 597 

described in both theta and delta frequency bands (van Luijtelaar et al. 2016; van Luijtelaar 598 

et al. 2011), implying that improved SWD prediction performance in WAG/Rij rats might 599 

require additional fine-tuning of the frequency band width applied by the Maksimenko et al. 600 

2017 algorithm.  601 

 602 

4.2 Random forest machine learning algorithm for the reduction of false alarms. 603 

Irrespective of the combination of recording sites, false alarm rates remained at a relatively 604 

high level. However, statistical comparison between wavelet spectra of true positive and 605 

false positive predictions were revealed to significantly differ in their wavelet energies in both 606 

strains and a random forest machine learning algorithm could be trained to detect such pre-607 

existing spectral differences to further differentiate between true and false positive 608 

predictions. In long lasting, out-of sample, 24 hours recordings in the deep layers of S1 in 609 

nine GAERS, which cover the full diurnal variation reported for SWD occurrence (Smyk and 610 

van Luijtelaar 2020), this additional classification of a trained random forest reduced the false 611 

alarm rate for SWD prediction by an average of 71,4%  612 

 613 

Of note, the balanced accuracy of classification depended on the approach of training (i.e. 614 

oversampling vs. undersampling) introduced to the random forest. Machine learning 615 

algorithms require a balanced training set in order for unbiased assessments of error rates to 616 

be achieved (Khan et al. 2018). With respect to SWDs, precursor and true positive 617 

predictions are an underrepresented class compared to the much larger group of interictal 618 

and false positive predictions. For balance training, random undersampling and (moderate) 619 

random oversampling (Chawla et al. 2002; Kubat et al. 1997) were used, and classification 620 

performance of two differentially trained random forests were compared. Significantly higher 621 

balanced accuracies were found for the random forest trained in the moderate oversampling 622 

approach as compared to the under-sampling approach, suggesting that undersampling 623 
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does not include the full spectrum of variance among different types of false positive 624 

detections.   625 

 626 

Another common source of error in machine learning algorithms is the choice of the 627 

dataset on which algorithm performance is evaluated. As mentioned above, in line with 628 

guidelines of good scientific practice (Kuhlmann et al. 2018; Mormann et al. 2007), algorithm 629 

performance was evaluated both in unseen in-sample recordings of the same rats (30% of 630 

unseen data) as well as in lasting, non-selected, pseudo-prospective 24 hours recordings 631 

acquired in a separate group of GAERS (out-of sample evaluation). The importance of such 632 

an additional validation step can readily be inferred from the drop in algorithm performance 633 

between in-sample and out-of sample testing. Furthermore, our attempt to confront the 634 

algorithm with the full range of diurnal variations necessitated these 24 hours recordings.  635 

 636 

Unfortunately, classification by the random forest also went along, to some degree, with a 637 

decrease in prediction sensitivity, in that 200 out of 409 SWD were correctly predicted 638 

(corresponding to a decrease in sensitivity by 41%). The prediction of SWDs thus lacks 639 

behind the performance of prediction systems aimed at focal convulsive seizures, reaching 640 

sensitivities of prediction up to around 90% (Kiral-Kornek et al. 2018; Khan et al. 2018; 641 

Kuhlmann et al. 2018). Of note,  SWDs in absence epilepsy constitute a type of seizure that 642 

is fundamental different from focal convulsive seizures, in terms of pharmacological profile, 643 

frequency of occurrence, pathomechansms, and interictal spike patterns (Depaulis and van 644 

Luijtelaar 2006). Moreover, the moderate performance of SWD prediction may relate to inter-645 

individual differences, which are visible in both in-sample and out-of sample validation. 646 

Spatial variance between the position of the recording electrodes relative to the initiation 647 

zone in S1, or neurobiological differences in the cortical initiation network between 648 

individuals (Meeren et al. 2002) may explain these findings. As a corollary, individualized 649 

training of the random forest on long-term data obtained from a single individual may fine-650 

tune and improve random forest approaches to SWD prediction.  651 

 652 

4.3 Possible translation to prediction of SWDs in human absence epilepsy 653 

SWD prediction performance of the Maksimenko et al (2017) and combined classification 654 

performance of the random forest was best for intracortical recordings obtained in close 655 

proximity to the seizure initiation network in S1. These findings provide an interesting 656 

perspective for SWD prediction in humans using surface EEG recordings. As in the genetic 657 

rat models, a local cortical initiation site of SWDs has been identified using EEG and MEG 658 

recordings combined with non-linear association analysis in children with absence epilepsy 659 
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(Westmijse et al. 2009; Ossenblok et al. 2019). Moreover, Gupta and colleagues (2011) 660 

identified pre-ictal sources of activity, occurring approximately 1 second prior to SWDs. Of 661 

note, the exact location of the cortical SWD onset zone is variable between individual 662 

children and pre-ictal activity was reported to be most pronounced in the delta frequency 663 

range. Fine tuning of the frequency bands analyzed by the Maksimenko et al algorithm, and 664 

training of the random forest on long-lasting EEG recordings in an individual child, are thus 665 

promising possibilities paving the way for SWD prediction in children.  666 

Wavelet analysis is a fast and reliable method for assessing non-stationary signals like LFP- 667 

or EEG recordings (Hramov et al. 2015). Together with the fast temporal precision of EEG 668 

and LFP recordings, this approach allows a detection of fast and short lasting events like 669 

SWD precursors and opens the door for an implementation in an on-line setting aimed at real 670 

time prediction and prevention (Maksimenko et al. 2017) with as little interference to the 671 

overall brain activity as possible (van Luijtelaar et al. 2017; Osterhagen et al. 2010). Such a 672 

treatment approach might go along with a strong relief of side-effects often reported for the 673 

commonly used chronic pharmaceutical interventions (Crunelli et al. 2020).  674 

 675 
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 852 

 853 

 854 

Figure legends and tables  855 

Figure 1: Exemplary local field potential recordings in the deep somatosensory cortex of a 856 

GAERS (right) as well as simultaneously recorded LFPs the deep somatosensory cortex and 857 

vertral-postero-medial thalamic nucleus (VPM) of a WAG/Rij rat (upper left panel and lower 858 

left panel, respectively). Arrows indicates the onset of the SWD, determined according to the 859 

criteria outlined by van Luijtelaar & Coenen (1986), taking the peak of the first spike of twice 860 

the background as reference for SWD onset. 861 

 862 

Figure 2: Wavelet analysis for SWD prediction. Relative sensitivity (A) and average false 863 

alarm rate (C) of SWD prediction for different combinations of recording sites in the cortico-864 

thalamic system, obtained by the Maksimenko et al. (2017) algorithm. LFPs, simultaneously 865 

recorded in the cortico-thalamic system of WAG-Rij rats (see methods), were analyzed in 866 

combinations of either two or three recording sites. Results from all 85 combinations are 867 

presented in Table I. To avoid type II errors, all combinations of recording sites were grouped 868 

as either ‘CC’ (two intracortical recording sites in S1), ‘CT’ (one cortical recording site in S1 869 

and one thalamic recording site), ‘TT’ (two intrathalamic recording sites, ‘CCC’ (three 870 

intracortical recording sites in S1), ‘CCT’ (two cortical recording sites in S1 and one thalamic 871 

recording site), ‘CTT’ (one cortical recording site in S1 and two thalamic recording sites), 872 

‘TTT’  (three intrathalamic recording sites) or ‘MCCC’ (three intracortical recording sites in the 873 

secondary motor cortex), respectively. B, C: Results of post-hoc comparison verified by 874 

ANOVA, with *** indicating significance at a p<0.001 level for sensitivity of prediction (B) and 875 

false alarm rate (D), respectively. E: Relationship of false alarm rates and average sensitivity 876 

of SWD prediction for different combinations of recording sites in the cortico-thalamic system 877 

of WAG/Rij rats, analyzed by the Maksimenko et al. (2017) algorithm. Note highest sensitivity 878 

with a low false alarm rate for prediction based on three intracortical recordings in S1 (blue 879 

triangle) that outperforms all other combinations of recording sites. Further note the negative 880 

correlation between both indicators of SWD prediction performance (r = -0.716; p<0.001), 881 

indicating that higher SWD prediction sensitivity at any given combination of recording sites 882 

does not occur at the trade-off of a high false alarm rate. 883 

 884 
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Figure 3: SWD prediction in two genetic rat models of absence epilepsy. A, B: Average 885 

sensitivity of SWD prediction (A) and false alarm rate expressed in number false positives 886 

per hour (nFP/h) (B) achieved by the Maksimenko et al. (2017) algorithm assessed in 4 887 

hours lasting LFP recordings, obtained in layers IV, V and VI of S1 in GAERS and WAG/Rij 888 

rats.  889 

C - E: Comparison of wavelet spectra of true and false positive predictions. An exemplary 890 

LFP trace depicting a pre-SWD -> SWD transition is presented in (C). Onset of SWD is 891 

marked by red vertical line termed 2.  The corresponding spectrogram of a true positive 892 

detection identified in intracortical LFP recordings in S1 of a GAERS is shown in (D). Time 893 

point -0.5 to 0 (red rectangle termed 1) features the analysis window (window size 500 ms) in 894 

which the true positive precursor is detected. An exemplary spectrogram of a false positive 895 

detection is shown in (E). Again, time point -0.5 to 0 features the analysis window (window 896 

size 500 ms) in which the false positive precursor is detected. F: Statistical comparison of the 897 

product of wavelet energy, assessed in the frequency bands W(5-10 Hz), W(3-5 Hz)and W(7-20 Hz) 898 

(Maksimenko et al. 2017), between true and false positives in WAG/Rij rats. E: Statistical 899 

comparison of the product of wavelet energy, assessed in the frequency bands W(5-10 Hz), W(3-900 

5 Hz) and W(7-20 Hz) (Maksimenko et al. 2017), between true and false positives in GAERS. *** 901 

indicates a significant difference verified by ANOVA at level of p<0.001; ** at a level of 902 

p<0.01; and * at level of p<0.05. 903 

 904 

Figure 4: Differentiation between true- and false positives by a random forest machine 905 

learning algorithm. A: Schematic representation of the random forest machine learning 906 

algorithm for differentiation between true positive and false positive predictions. After wavelet 907 

analysis of either two or three simultaneously recorded LFP traces, the wavelet energies 908 

(W(5-10 Hz), W(3-5 Hz) and W(7-20 Hz))  extracted in each trace are fed to a random forest composed 909 

of 1000 decision trees. Final classification of the random forest is yielded from a majority 910 

voting of the different trees (see methods for detail). B: Out-of-sample performance 911 

(expressed as balanced accuracy) of random forests.  Training in an undersampling 912 

approach on wavelet spectra derived from recordings in layers V and VI of S1 (CC), 913 

recordings in layers IV, V and VI of S1  (CCC), recordings in layers IV, VI of S1 and VPM  914 

(CCT), recordings in layer VI of S1, VPM and RTN (CTT), recordings in VPM, cRTN and Po 915 

(TTT) of WAG/Rij rats at a sensitivity of 60%, and recordings in layers IV, V and VI of S1 of 916 

GAERS at a sensitivity of 60% (GCCC) or 90% (GCCC90%). Numbers in GAERS groups 917 

(1844, 161, 145) refer to the different amount of true/false positive fragments, with which the 918 

random forest was trained. Stars in B indicate a significant classification above chance as 919 

validated by surrogate statistics with * indicating significance at a p<0.05, ** p<0.01 and *** 920 
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p<0.001 level. C: Table of achieved average balanced accuracies achieved by analysis of 921 

the different combinations of recording sites. D: Statistics between group comparison of 922 

balanced accuracies performed with ANOVA with * indicating significance at a p<0.05, ** 923 

p<0.01 and *** p<0.001 level. E: Relation between classification accuracy and the number of 924 

incorporated trees in the random forest.  925 

Table I: Combinations of recording sites analyzed by the Maksimenko et al. algorithm and 926 
achieved average sensitivities of prediction and false alarm rates. Abbreviations: ctx4: layer 4 of 927 
somatosensory cortex, ctx5: layer 5 of somatosensory cortex, ctx6: layer 6 of somatosensory cortex, 928 
ATN: anterior thalamic nucleus, VPM: vertral-postero-medial thalamic nucleus, PO: posterior thalamic 929 
nucleus, rRTN: rostral reticular thalamic nucleus, cRTN: caudal reticular thalamic nucleus, Mctx5a: 930 
layer 5a of secondary motor cortex, Mctx5b: layer 5b of secondary motor cortex, Mctx6: layer 6 of 931 
secondary motor cortex   932 

number of 
simultaneous 

recording 
sites 

combination 
number 

area 1 area 1 area 3 abbreviation 
in text and 

figures 

  

average 
sensitivity  

average 
nFP/h 

3 1 ctx 4 ctx 5 ctx 6 CCC 61,755 85,962 

 2 ctx 4 ctx 5 Po CCT 48,392 65,199 

 3 ctx 4 ctx 5 ATN CCT 45,974 85,363 

 4 ctx 4 ctx 5 rRTN CCT 44,230 69,947 

 5 ctx 4 ctx 5 cRTN CCT 50,600 58,431 

 6 ctx 4 ctx 5 VPM CCT 46,007 61,826 

 7 ctx 4 ctx 6 Po CCT 50,718 68,470 

 8 ctx 4 ctx 6 ATN CCT 48,932 82,776 

 9 ctx 4 ctx 6 rRTN CCT 45,690 71,436 

 10 ctx 4 ctx 6 cRTN CCT 51,823 60,125 

 11 ctx 4 ctx 6 VPM CCT 50,269 58,889 

 12 ctx 5 ctx 6 Po CCT 48,880 79,424 

 13 ctx 5 ctx 6 ATN CCT 48,345 95,587 

 14 ctx 5 ctx 6 rRTN CCT 51,354 65,995 

 15 ctx 5 ctx 6 cRTN CCT 48,963 72,081 

 16 ctx 5 ctx 6 VPM CCT 48,708 62,217 

 17 ctx 4 Po ATN CTT 36,121 98,180 

 18 ctx 4 Po rRTN CTT 35,171 97,276 

 19 ctx 4 Po cRTN CTT 35,430 95,410 

 20 ctx 4 Po VPM CTT 34,470 99,526 
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 21 ctx 4 ATN rRTN CTT 38,536 82,294 

 22 ctx 4 ATN cRTN CTT 34,133 101,225 

 23 ctx 4 ATN VPM CTT 32,981 99,376 

 24 ctx 4 rRTN cRTN CTT 35,892 93,150 

 25 ctx 4 rRTN VPM CTT 33,018 101,039 

 26 ctx 4 cRTN VPM CTT 37,588 83,424 

 27 ctx 5 Po ATN CTT 38,046 96,665 

 28 ctx 5 Po rRTN CTT 36,549 93,522 

 29 ctx 5 Po cRTN CTT 36,114 97,002 

 30 ctx 5 Po VPM CTT 34,702 99,814 

 31 ctx 5 ATN rRTN CTT 40,655 77,191 

 32 ctx 5 ATN cRTN CTT 36,485 98,925 

 33 ctx 5 ATN VPM CTT 33,716 98,891 

 34 ctx 5 rRTN cRTN CTT 37,172 90,429 

 35 ctx 5 rRTN VPM CTT 33,526 100,798 

 36 ctx 5 cRTN VPM CTT 38,023 82,687 

 37 ctx 6 Po ATN CTT 40,751 95,255 

 38 ctx 6 Po rRTN CTT 38,563 93,038 

 39 ctx 6 Po cRTN CTT 38,292 95,827 

 40 ctx 6 Po VPM CTT 36,516 101,606 

 41 ctx 6 ATN rRTN CTT 43,434 72,403 

 42 ctx 6 ATN cRTN CTT 37,946 100,546 

 43 ctx 6 ATN VPM CTT 35,950 98,257 

 44 ctx 6 rRTN cRTN CTT 40,527 84,918 

 45 ctx 6 rRTN VPM CTT 35,363 100,356 

 46 ctx 6 cRTN VPM CTT 38,784 87,363 

 47 Po ATN rRTN TTT 35,880 103,088 

 48 Po ATN cRTN TTT 31,342 115,496 

 49 Po ATN VPM TTT 30,849 115,094 

 50 Po rRTN cRTN TTT 33,263 109,348 

 51 Po rRTN VPM TTT 31,252 116,632 

 52 Po cRTN VPM TTT 30,485 116,111 
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 53 ATN rRTN cRTN TTT 36,646 89,893 

 54 ATN rRTN VPM TTT 34,497 98,061 

 55 ATN cRTN VPM TTT 30,137 110,576 

 56 rRTN cRTN VPM TTT 30,907 115,390 

 57 Mctx 5a Mctx 
5b 

Mctx 6 MCCC 33,330 129,803 

2 1 ctx 4 ctx 5  CC 31,173 211,365 

 2 ctx 4 ctx 6  CC 34,619 209,386 

 3 ctx 5 ctx 6  CC 33,612 242,989 

 4 ctx 4 VPM  CT 21,408 123,705 

 5 ctx 4 ATN  CT 20,799 148,887 

 6 ctx 4 Po  CT 21,987 151,854 

 7 ctx 4 cRTN  CT 23,729 122,750 

 8 ctx 4 rRTN  CT 25,276 130,967 

 9 ctx 5 VPM  CT 23,357 120,332 

 10 ctx 5 ATN  CT 22,728 158,520 

 11 ctx 5 Po  CT 24,474 151,471 

 12 ctx 5 cRTN  CT 24,874 130,418 

 13 ctx 5 rRTN  CT 29,267 121,645 

 14 ctx 6 VPM  CT 23,514 146,704 

 15 ctx 6 ATN  CT 24,906 174,084 

 16 ctx 6 Po  CT 25,886 171,314 

 17 ctx 6 cRTN  CT 25,948 145,599 

 18 ctx 6 rRTN  CT 31,349 137,519 

 19 VPM ATN  TT 10,411 157,414 

 20 VPM Po  TT 10,741 186,945 

 21 VPM cRTN  TT 14,999 151,043 

 22 VPM rRTN  TT 15,703 155,311 

 23 ATN Po  TT 12,648 179,928 

 24 ATN cRTN  TT 10,670 165,252 

 25 ATN rRTN  TT 20,339 142,317 

 26 Po cRTN  TT 11,267 171,176 



 

 30 
 

 27 Po rRTN  TT 17,575 166,227 

 28 cRTN rRTN  TT 21,339 142,157 

 933 
 934 
 935 
 936 
Table II: Out-of-sample performance of the random forest (trained in an undersampling approach on 937 
spectra derived from three intracortical recordings in S1 of GAERS at a sensitivity of 90%) confronted 938 
to spectra derived from 24 hours recordings in a separate group of GAERS (n=9).  939 
Depicted in the upper panel is the average confusion matrix (+/- SEM), specifying the percentage of 940 
true positives correctly classified as true positives (lower right corner), true positives incorrectly 941 
classified as false positives (lower left corner), false positives correctly classified as false positives 942 
(upper left corner) and false positives incorrectly classified as true positives (upper right corner).   943 
Lower panel depicts the balanced accuracies and F1-scores for each individual rat. Note that the F1 944 
score reflects the tradeoff between false alarm rate/sensitivity. Low F1 scores are reflecting the drop of 945 
sensitivity associated to the drop of false alarm rate. As our goal in this work is the latter, the low 946 
scores are justified by the high balanced accuracies. * denotes an above chance balanced accuracy of 947 
classification as verified by surrogate statistics. 948 
 949 
 average confusion matrix 

 
 

 predicted as false positive predicted as true positive 
false positive  52.46 % +/- 9.38 

 
47.54 % +/- 9.38 

true positive 50.66 % +/- 8.95 49.34 % +/- 8.95 
 

 
 
 balanced accuracy F1-score 
rat 1 47,37% 14,53% 

rat 2 53,68% 6,89% 

rat 3 47,44% 11,74% 

rat 4 49,07% 4,82% 

rat 5 59,62% * 9,14% 

rat 6 51,06% 5,44% 

rat 7 51,93% 7,18% 

rat 8 50,13% 4,25% 

rat 9 47,82% 9,68% 

 950 

 951 

 952 

 953 

 954 

 955 

 956 

 957 
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 959 

 960 

 961 

 962 
Table III: Out-of-sample performance of the random forest (trained in an oversampling approach on 963 
spectra derived from three intracortical recordings in S1 of GAERS at a sensitivity of 90%) confronted 964 
to spectra derived from 24 hours recordings in a separate group of GAERS (n=9).  965 
Depicted in the upper panel is the average confusion matrix (+/- SEM), specifying the percentage of 966 
true positives correctly classified as true positives (lower right corner), true positives incorrectly 967 
classified as false positives (lower left corner), false positives correctly classified as false positives 968 
(upper left corner) and false positives incorrectly classified as true positives (upper right corner).   969 
Lower panel depicts the balanced accuracies and F1-scores for each individual rat. Note that the F1 970 
score reflects the tradeoff between false alarm rate/sensitivity. Low F1 scores are reflecting the drop of 971 
sensitivity associated to the drop of false alarm rate. As our goal in this work is the latter, the low 972 
scores are justified by the high balanced accuracies. * denotes an above chance balanced accuracy of 973 
classification as verified by surrogate statistics. 974 
 975 
 976 
 average confusion matrix 

 
 

 predicted as false positive predicted as true positive 
false positive  71.38 % +/- 2.56 

 
28.62 % +/- 2.56  

true positive 46.00 % +/- 4.00 54.00 % +/- 4.00 
 

 
 
 balanced accuracy F1-score 

rat 1 70,28% * 46,88% 

rat 2 55,14% 7,59% 

rat 3 60,13% * 16,60% 

rat 4 63,98% * 12,21% 

rat 5 63,15% * 12,02% 

rat 6 59,70% * 8,64% 

rat 7 68,47% * 13,14% 

rat 8 59,00%* 6,51% 

rat 9 64,38% * 19,71% 
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