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a b s t r a c t 

The spatially discrete-continuous dynamical systems, that are composed of a spatially extended medium 

coupled with a set of lumped elements, are frequently met in different fields, ranging from electronics 

to multicellular structures in living systems. Due to the natural heterogeneity of such systems, the cal- 

culation of Lyapunov exponents for them appears to be a challenging task, since the conventional tech- 

niques in this case often become unreliable and inaccurate. The paper suggests an effective approach to 

calculate Lyapunov exponents for discrete-continuous dynamical systems, which we test in stability anal- 

ysis of two representative models from different fields. Namely, we consider a mathematical model of 

a 1D transferred electron device coupled with a lumped resonant circuit, and a phenomenological neu- 

ronal model of spreading depolarization, which involves 2D diffusive medium. We demonstrate that the 

method proposed is able reliably recognize regular, chaotic and hyperchaotic dynamics in the systems 

under study. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

It is quite common in complexity science, when a spatially ex-

tended media with infinitely many degrees of freedom interacts

with a dynamical system localized in space and having a finite

number of degrees of freedom. The mathematical models of such

discrete-continuous systems (DCS) are composed of partial differ-

ential equations (PDEs) coupled with ordinary differential equa-

tions (ODEs). 

The models that fall to the class of discrete-continuous sys-

tems arise in many applications from different research fields rang-

ing from life sciences to information processing and electronics.

Incomplete list of such problems includes modeling of drug de-

livery to biological tissues [1] , neural dynamics [2] , mitochon-

drial swelling [3] , intracellular signaling [4] , cortical spreading

depression [5] , quantum information processing [6] , active semi-

conductor media interacting with discrete elements [7] , lumped

circuits coupled to a transmission line [8] , multiscale continuum

mechanics [9] . 
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The similar class of model systems appears in the number of

iophysical problems, where the hemodynamics, which is often

escribed by Navier–Stokes PDEs, is considered together with the

ime-variable system-wide quantities, e.g., the blood pressure or

lectrocardiography (ECG) [10,11] . 

Due to the importance of the spatially discrete-continuous

odels for the different research fields, the specialized solution

lgorithms were developed (e.g. [12] ). However, there is a clear

hortfall of the tools available for stability analysis of such dynami-

al systems. DCSs are often analysed with the help of methods, de-

eloped for systems with finite number of the degrees of freedom.

n this context the original spatially-distributed subsystem can be

escribed by the set of ODEs based on lattice model [13] or Laplace

ransform method [14] . In electronics the dynamics of DCSs are

ften analysed by the consideration of the subsystems with finite

umber of the degrees of freedom and spatially-extended subsys-

em separately [15,16] . These approaches, obviously, have their spe-

ific limitations. In particular, transition to the lattice model can

otentially affects the system dynamics in an unpredictable way

13] , while the consideration of the dynamical regimes taking place

n finite-dimensional subsystem may not reflect the key features of

patiotemporal behaviour of spatially extended subsystem [17] . 

http://dx.doi.org/10.1016/j.chaos.2017.08.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2017.08.021&domain=pdf
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The most promising approach for the stability analysis of DCSs

s based on the calculation of Lyapunov exponents (LEs). The use

f such tool makes the significant progress in study of the finite-

imensional flow systems [18,19] , discrete maps [20] and time-

eries [21] (including the cases with the presence of noise, see, e.g,

22] ). In recent works Lyapunov exponents are applied for analy-

is of non Hermitian Hamiltonian systems [23] and neural systems

24] . In the case of spatiotemporal dynamics the calculation of LEs

s more complicated [25,26] . At the same time, the recent results

n Lyapunov analysis of the extended media, described within the

ramework of hydrodynamic approximation has shown a great po-

ential of this technique for the quantitative assessment of chaotic

ehavior [26,27] , detection of hyper-chaotic regimes [28] and iden-

ification of the synchronous modes in coupled spatially extended

lements [28] as well as networks of interacting spatially extended

nits [29,30] . 

It should be noted, the existent methods of the LEs calcula-

ion either for the finite-dimensional systems [31] (such as flows

r maps) or spatially extended media [28] cannot be directly ap-

lied to DCSs, i.e., to the systems consisting of both the spa-

ially extended and concentrated in space subsystems. The main

roblem here is that the reference states of such systems are

etermined simultaneously by two significantly different types

f variables, namely, by the variables depending only on time

which correspond to the finite dimensional subsystems) and by

he functions which depend both on time and space coordinates

they represent the spatially extended subsystems). This makes im-

ossible the straightforward implementation of the normalization

nd orthogonalization procedures, developed for the finite dimen-

ional [31] and spatially-extended [28] systems and, as the results,

he accurate estimation of Lyapunov exponents. 

In the present paper we introduce an approach allowing to cal-

ulate the spectrum of LEs for discrete-continuous dynamical sys-

ems. In order to illustrate the universality and capability of the

roposed method as well as its relevance, we apply the developed

pproach to analyze the stability of dynamical regimes in two rad-

cally different exemplary DCS that came from different research

elds. 

First, we perform the Lyapunov stability analysis of the charge

ynamics in a finite-dimensional dynamical circuit, where a spa-

ially extended 1D media is included as an nonlinear element [7] .

he latter is described by a set of the coupled Poisson and conti-

uity equations, whereas the circuit is described with the help of

on-stationary Kirchhoff equations. 

Next, we consider an example from different research area.

amely, we analyze the dynamics of a phenomenological model

f spreading depolarization [5] , that is composed of a set

f FitzHugh–Nagumo (FHN) oscillators (model neurons) coupled

hrough 2D diffusive media that describe the extracellular spread-

ng of depolarizing substances. 

In both cases the Lyapunov analysis allowed us to reveal and

uantify the transitions between the regular and chaotic dynamics

ith variation of the control parameters. 

The paper has the following structure. The approach to calcu-

ation of the spectrum of LEs for DCS is described in Section 2 .

he dynamics of the RLC-circuit connected with the semiconduc-

or transferred electron device (TED) is described and analyzed in

ection 3 . Section 4 is devoted to the Lyapunov stability analysis of

he model of the spreading depolarization. The final remarks and

onclusions are given in Section 5 . 

. Calculation of the Lyapunov exponents for spatially 

iscrete-continuous systems 

Let us consider an arbitrary DCS, which is described by a set

f coupled PDEs and ODEs. The state of the spatially extended
edium modeled by PDEs is supposed to be defined by N vari-

bles, each being a function of both the displacement vector r and

ime t 

1 (r , t) , �2 (r , t) , . . . , �N−1 (r , t) , �N (r , t) , 

r ∈ R 

D , 0 ≤ t ≤ ∞ , (1) 

 is the dimension of the space (in our study D = 1 for the sys-

em considered in Section 3 and D = 2 for the discrete-continuous

odel of the spreading depression discussed in Section 4 ). The

ariables depending only on time 

1 (t) , �2 (t ) , . . . , �M−1 (t ) , �M 

(t ) , 0 ≤ t ≤ ∞ . (2)

escribe the state of the subsystems with M /2 degrees of freedom

efined by ODEs. 

In order to characterize the stability of the DSC dynamics, one

as to trace the evolutions of the system state (in our case it

s U (r , t) = (�1 (r , t) , . . . , �N (r , t) , �1 (t) , . . . �M 

(t)) T ) and analyse

ow a linear perturbation of this state changes with time. How-

ver, this procedure for the case when state variables depend only

n time [31,32] is significantly different from the case, when the

tate variables depend both on time and displacement [27,28] . In

ur situation we deal with a mix of two type of the variables men-

ioned above, which prevents a direct application of the convention

outines. To overcome this conceptual obstacle, we propose to con-

ider the variables (2) as the spatially extended ones, i.e., 

k (r , t) = �k (t) , k = 1 , M . (3)

In this case the state of the spatially discrete-continuous system

ay be considered as 

 (r , t) = (�1 (r , t) , . . . , �N (r , t) , �1 (r , t) , . . . , �M 

(r , t)) T , (4)

nd the evolution operator 

ˆ 
 (U (r , t)) , (5) 

etermines the spatiotemporal behavior of the system state. This

volution operator consists typically of coupled ordinary differen-

ial equations and partial differential equations determining the

volution of localized in space subsystems and spatially extended

edia, respectively. E.g., for the RLC-TED circuit considered in

ection 3 the evolution operator (5) consists of ODEs (19) and PDEs

20) –(21) with the boundary conditions (24) . Assume that r = x in

he case of D = 1 , r = (x, y ) when D = 2 and r = (x, y, z) for D = 3 .

The numerical algorithms for the LE calculation are usually

ased on the analysis of the perturbation V ( r , t ) of the reference

tate U ( r , t ) and the calculation of the increment/decay rate. To es-

imate the K largest Lyapunov exponents �i , i = 1 , . . . , K, one has

o consider a set of orthogonal perturbations V i (r , t) , i = 1 , . . . , K.

n this case, the Lyapunov exponents characterize the exponential

rowth/decay of K orthogonal modes of U ( r , t ). Each perturbation

 i ( r , t ) is defined as 

 i (r , t) = ( ̃  φi 
1 (r , t) , . . . , ˜ φi 

N (r , t) , ˜ ψ 

i 
1 (r , t) , . . . , ˜ ψ 

i 
M 

(r , t)) T , 

i = 1 , K (6) 

ssuming that all ˜ ψ 

i 
k 
(r , t) depend only on time, i.e., 

˜ 
 

i 
k (r , t) ≡ ˜ θ i 

k (t) , ∀ k, ∀ i. (7)

he perturbations introduced must initially be orthogonal and nor-

alized. The orthogonality condition reads 

(V i (r , 0) , V j (r , 0)) = 

{
1 , i = j, 
0 , i � = j. 

(8)

here the brackets ( · , ·) denote the scalar product 
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a  
(V i (r , t) , V j (r , t)) 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∫ 
L 

( 

N ∑ 

l=1 

˜ φi 
l (x, t) ̃  φ j 

l 
(x, t) 

) 

dx + 

+ 

∫ 
L 

( 

M ∑ 

l=1 

˜ ψ 

i 
l (x, t) ˜ ψ 

j 

l 
(x, t) 

) 

dx, if D = 1 , 

∫ ∫ 
S 

( 

N ∑ 

l=1 

˜ φi 
l (x, y, t) ̃  φ j 

l 
(x, y, t) 

) 

d x d y + 

+ 

∫ ∫ 
S 

( 

M ∑ 

l=1 

˜ ψ 

i 
l (x, y, t) ˜ ψ 

j 

l 
(x, y, t) 

) 

d x d y, if D = 2 . 

(9)

Due to Eq. (7) the integral of the second term in Eq. (9) is 

∫ 
L 

( 

M ∑ 

l=1 

˜ ψ 

i 
l (r , t) ˜ ψ 

j 

l 
(r , t) 

) 

dr = L ×
M ∑ 

l=1 

˜ θ i 
l (t) ̃  θ j 

l 
(t) , (10)

and, therefore, Eq. (9) may be considered as the sum of the

weighed Euclidean scalar product for the discrete part and the

scalar product for the continuous part of the state space. 

The normalization means that 

|| V i (r , t r ) || = 1 , (11)

where || V i || = 

√ 

(V i , V i ) , and t r are the time moment, when the

normalization is required. The set of the perturbations V i ( r , t ), i =
1 , K , which fulfill the requirements of Eqs. (8) and (11) at t = t r can

be built with the help of the Gram-Schmidt procedure 

ˆ V 1 (r , t r ) = ϕ 1 (r ) (12)

ˆ V i +1 (r , t r ) = ϕ i +1 (r ) −
i ∑ 

k =1 

(V k (r , t r ) , ϕ i +1 (r )) V k (r , t r ) (13)

i = 1 , 2 , . . . , K − 1 ;

V i (r , t r ) = 

ˆ V i (r , t r ) 

|| ̂  V i (r , t r ) || 
i = 1 , 2 , . . . , K. (14)

Here ˆ V 1 (r , t r ) , ˆ V 2 (r , t r ) , . . . , ˆ V K (r , t r ) generate a system of orthogo-

nal vectors, while ϕ 1 ( r ), ϕ 2 ( r ), ..., ϕ K ( r ) are the auxiliary functions,

which are chosen arbitrary for the initial moment of time. 

The evolution of the perturbations is described by the operator

(5) linearized in the vicinity of the reference state 

∂ ̂  L (U (r , t) , V i (r , t)) . (15)

Again, the linearized evolution operator (15) should be obtained

with the help of the linearization of the ODEs and PDEs being the

constituent subunits of the initial evolution operator (5) . 

In order to find the LEs spectrum, one needs to follow the

time evolution of both the reference state U ( r , t ) and its pertur-

bations V i ( r , t ) ( i = 1 , 2 , . . . , K) by the self-consistent integration of

Eqs. (5) and (15) . With this, the Gram-Schmidt procedure (12) –(14)

should be periodically applied over a certain time period � (see

Ref. [32] ) at time moment t r = j� ( j = 1 , . . . , I ) with newly defined

set of functions 

ϕ i (r ) = V i (r , t r ) . (16)

After the sufficiently large number, I , of such repetitions the per-

turbations V i ( r , t r ) taken after orthogonalization ( Eqs. (12) and

(13) ) but before renormalization ( Eq. (14) ) are used to find Lya-

punov sums 

S i = 

I ∑ 

j=1 

ln || ̂  V i (r , j�) || , (17)
hich yields LEs as 

i = 

S i 
I�

. (18)

Summarizing the formalism given above, Lyapunov exponents

or spatially discrete-continious dynamical systems can be calcu-

ated using the following algorithm: 

1. determination of the system reference state U ( r , t ) in form

given be Eq. (4) , where the set of variables �k ( t ) (see Eq. (2) )

uniquely describes the state of the subsystem with the finite

number of degrees of freedom and variables �k ( r , t ) (1) de-

scribe the state of the spatially-extended subsystem; 

2. determination of the small perturbations V i ( r , t ) of the sys-

tem state in the form of Eq. (6) ; 

3. obtaining equations, which describe the spatio-temporal

evolution of the small perturbations, V i ( r , t ), by the lin-

earization of the equations (in the vicinity of the reference

state, U ( r , t )), describing the system state evolution; 

4. realization of Gram–Schmidt procedure (12) – (14) for gen-

erating a system of orthogonal perturbations V i ( r , t ) with

| V i (r , t) | = 1 . 0 ; 

5. implementation of the algorithms for numerical simulation

of the evolution of system state U ( r , t ) with the set of per-

turbations V i ( r , t ); 

6. sequential repetition of steps 4 and 5 with Lyapunov sums

(17) calculation; 

7. Lyapunov exponents calculation according to Eq. (18) . 

This algorithm can be applied to the mathematical models from

ifferent fields of science. In the next sections of the paper we

pply the proposed algorithm to fundamentally different DCSs,

amely, the electronic ( Section 3 ) and neural ( Section 4 ) systems,

or which the reference system state U ( r , t ) is described by the set

f variables, part of which depend on time, while others depend

n time and spatial coordinate. 

. Chaos in RLC-TED circuit 

First, we have applied the proposed approach to a practical ex-

mple of electronic systems (a two-terminal transferred electron

evice (TED) coupled with a RLC-circuit). Here, the TED plays a

he role of a 1D nonlinear active medium, while the RLC-circuit

s a dynamical system with a finite number of degrees of free-

om. Fig. 1 a,b present the equivalent electric circuit of this device,

here TED is represented by a nonlinear resistor ( Fig. 1 b). The

ime-depended current through this resistor I ( V TED ) is generated in

esponse to the voltage V TED applied across two terminals of the

ED. Variables V 1 and I 1 are the voltage drop across the capacitor

nd the current through the inductor, respectively, R = 17 � is the

esistance of the circuit. The values of the capacitance C and the

nductance L are the adjustable parameters of the circuit, V 0 is the

c bias, which we use as the main control parameter of the model

nder study. 

.1. Model 

The circuit in Fig. 1 a,b can be described by ODEs based on the

irchhoff rules. 

dV 1 

dt 
= 

I(V T ED ) − I 1 
C 

, 

dI 1 
dt 

= 

V 1 − RI 1 
L 

, 

 T ED = V 0 − V 1 . (19)

From physical point of view Eq. (19) can be understood as

 mathematical model of a TED interacting with an external
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Fig. 1. ( a ) The equivalent circuit of the finite-dimensional system represented by 

the RLC-circuit coupled with ( b ) the spatially extended active element represented 

by the transferred electron device. I 1 ( t ) and V 1 ( t ) are the current and the voltage 

in the circuit. ( c ) The current-voltage characteristic of this element without (curve 

1) and with (curve 2) external circuit. The control parameters of the circuit are 

f Q = 13 . 81 GHz, Q = 150. 
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ingle-mode resonator, whose the eigenfrequency f Q and

he quality factor Q are determined as f Q = 1 / (2 π
√ 

LC ) and

 = (1 /R ) 
√ 

L/C , respectively. 

We consider realistic circuit parameters evaluated from the re-

ent experiments with superlattice coupled with a resonant cir-

uit [7] . 

As a mathematical model of TED we consider the self-consistent

ystem of the one-dimensional current continuity and the Pois-

on equation, which are used widely to describe charge trans-

ort processes in solid state and plasma physics, including Pierce

eam-plasma system [33] , non-neutral plasma [34] , simple plasma

iodes [35,36] , semiconductors [37,38] , organic field-effect transis-

ors [39] , etc. Such model was shown to demonstrate a variety

f nonlinear phenomena including developing instabilities of elec-

ron transport in Pierce diode [40] and semiconductor structures

37] , developing of turbulence [41] and bifurcations in plasma drift

aves [42,43] . 

As an example of a TED we consider a miniband semiconduc-

or superlattice which has been proposed in works [44,45] and has

ecame a classical model for analysis of nonlinear phenomena of

harge transport [46] . For this type of TED the model equations

ave a form 

∂n 

∂t 
= −1 

e 

∂ J 

∂x 
, (20) 

∂F 

∂x 
= 

e 

ε0 εr 
(n − n 0 ) , (21) 

here e > 0 is the absolute value of electron charge, n and J are

harge and current densities, respectively, and F is an electric field

trength. The values of relative permittivitie εr = 12 and the equi-

ibrium volume density of charge carriers n 0 = 3 × 10 22 m 

−3 corre-

pond to realistic devices [47,48] . The current density is estimated

s 

(x, t) = en (x, t) v (F (x, t)) , (22)
d 
nd the drift velocity is calculated using the Esaki–Tsu formula

44] 

 d (F (x, t)) = α
βF (x, t) 

1 + (βF (x, t)) 2 
. (23)

or our model we define α = 5 . 6 × 10 4 m/s and

= 3 . 15 × 10 −6 mV 

−1 . The voltage V TED ( t ) dropped along the

ED device of length L = 100 nm determines the boundary

ondition 

 T ED (t) = 

L ∫ 
0 

F (x, t) dx. (24)

Fig. 1 , c shows the current voltage characteristics of the au-

onomous superlattice (dashed curve 1), when V TED is constant,

nd for the case, when superlattice is coupled with the resonant

ircuit (solid curve 2). They were calculated by averaging the sta-

ionary (taken after some relaxation) current I ( t ) over time. In the

ase of the autonomous superlattice the current-voltage character-

stic demonstrates a rise-and-fall shape, where the descending part

f the curve is associated with appearance of periodic current self-

scillations caused by traveling charge domains [38] . Coupling to

he resonant circuit significantly modifies this part of the current-

oltage characteristics by generation of a series of additional peaks.

reviously it was shown that these features relate to the develop-

ent of additional instabilities in the system, which can lead to

mergence of chaos [7,49] . 

.2. Lyapunov analysis 

According to step 1 of the algorithm (see. Section 2 ), the state

f the model considered in Section 3.1 can be defined by a vector

 (x, t) = (n (x, t) , I(x, t) , V (x, t)) T , (25)

here component n ( x, t ) unambiguously determines the

tate of the medium (20) –(22) [27,28] , and variables I(x, t) =
 1 (t) , V (x, t) = V 1 (t) , ∀ x ∈ [0 , L ] characterize the state of the

LC-circuit. 

To calculate the spectrum of K highest Lyapunov exponents, in

greement with step 2 of the algorithm we use the set of the small

erturbations 

 i (x, t) = ( ̃  n i (x, t) , ̃  I i (x, t) , ̃  V i (x, t)) T , i = 1 , K . (26)

According to the step 3 of the algorithm (see. Section 2 ) time

volution of the introduced perturbations is govern by the linear

perator (15) , which is defined by a set of linear ODEs 

d ̃  V i 

dt 
= 

˜ I ( ̃  V T ED ) − ˜ I i 
C 

d ̃ I i 
dt 

= 

˜ V i − R ̃

 I i 
L 

˜ 
 T ED = − ˜ V i (27) 

nd PDEs 

∂ ̃  n i 

∂t 
= −1 

e 

∂ ̃  J i 
∂x 

∂ ̃  F i 
∂x 

= 

e 

ε0 εr 
( ̃  n i ) 

˜ J i = e ̃  n i v d (F ) + en 

dv d (F ) 

dF 
˜ F i 

L 
 

0 

˜ F i dx = 

˜ V T ED , (28) 

erived by linearization of Eqs. (19) –(24) . 
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Fig. 2. The spectrum of five highest LEs ( a ), the spatiotemporal dynamics of the 

reference state of the extended subsystem ( b ), the dynamics of the voltage in the 

circuit ( c ) and the power spectrum of the voltage oscillations ( d ), corresponded to 

the periodical regime, obtained for the spatially extended device interacting with 

the external circuit for V 0 = 0 . 45 V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The spectrum of five highest LEs ( a ), the spatiotemporal dynamics of the 

reference state of the extended subsystem ( b ), the dynamics of the voltage in the 

circuit ( c ) and the power spectrum of the voltage oscillations ( d ), corresponded to 

the chaotic regime, obtained for the spatially extended device interacting with the 

external circuit for V 0 = 0 . 86 V. 
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The set of perturbations (26) has been obtained with the help

of Gram–Schmidt procedure (step 4). Following step 5 of the algo-

rithm (see. Section 2 ) we have applied the numerical simulation of

the Eqs. (19) –(24) which describe evolution of system state with

Eqs. (27) –(28) describing the development of small perturbations. 

First, to demonstrate the effectiveness of the proposed tech-

nique, we consider the charge dynamics in the system for two rep-

resentative values of V 0 , namely V 0 = 0 . 45 V and V 0 = 0 . 86 V. 

The results of numerical calculations for V 0 = 0 . 45 V are pre-

sented in Fig. 2 . Fig. 2 , a displays the dependencies of the five

largest LEs on time, illustrating the convergence of the method. For

this dependence the exponents were calculated (steps 6 and 7) us-

ing Eq. (18) for different time intervals t = I�, where I = 1 , 2 , . . .

and � = 125 fs. Being unstable for small t , after t ≈ 20 ns the val-

ues of the LEs are stabilized with the largest exponent approxi-

mately equal to zero, which predicts a periodic character of charge

dynamics for the given V 0 . To verify this, we plot realisation of

the medium state variable n ( x, t ) ( Fig. 2 , b ) and the variable V 1 ( t )

characterizing the circuit ( Fig. 2 , c ). One can see that the charge

redistribution in the TED is associated with periodically travel-

ling charge domains (areas of high concentration of charge), which

cause regular oscillations of the voltage drop V 1 (t). These oscilla-

tions are characterised by a discrete spectrum consisting of a num-

ber of harmonics ( Fig. 2 , d ). Thus, the periodic behaviour predicted

by the calculations of the Lyapunov exponents is completely con-

firmed by analysis of the dynamical patterns in the system. 

The behaviour of the LEs changes for V 0 = 0 . 86 V. Now, con-

vergence of the Lyapunov exponents takes a longer time, t ≈ 60 ns

(compare Figs. 3 , a and 2 , a ). After the transient time the largest
E has the positive value, while the second largest exponent con-

erges to zero. Such spectrum of the exponents indicates the pres-

nce of chaotic dynamics. This fact is reflected in irregular pat-

ern in spatio-temporal dynamics of charge along SL displayed in

ig. 3 , b , and in aperiodic character of V 1 ( t ) oscillations presented

n Fig. 3 , c . The continuous spectrum of these oscillations (see

ig. 3 , d ) provides an additional evidence of chaos developed of

he system. 

Thus, the method is shown to be is able to distinguish regular

nd chaotic dynamics in the model under study. The calculations

f LEs performed for a wide range of different values V 0 revealed

hat a reliable estimation of LEs requires minimum I = 10 6 Gram–

chmidt iterations. Therefore, this number I is used in our further

nalysis. 

Next, we study how variation of the bias voltage V 0 and the

esonant frequency of the RLC- circuit f Q affects the stability of the

ystem. The dependencies of four largest LEs on V 0 for fixed f Q =
3 . 81 GHz (selected according to the experimental work [7] ) are

hown in Fig. 4 , a . 

For low V 0 < 0.35 V, all LEs have negative values, revealing the

quilibrium state in the system. With increase V 0 the largest LE

ecomes zero indicating a transition to periodic dynamics. Fur-

her growth of V 0 leads to appearance of a positive LE at V 0 =
 . 504 V, which corresponds to onset a chaos is the system. This

haotic regimes is changed by periodic dynamics at V 0 = 0 . 521 V.

n general, within the bias voltage range 0–0.8 V the Lyapunov

nalysis reveals few regions of chaos highlighted by grey shadow

n Fig. 4 , a . One can see that the appearance of the chaotic

egimes corresponds to the occurrence of additional peaks in the
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Fig. 4. The dependencies of four highest LEs on the supply voltage V 0 ( f ∗Q = 13 . 7 

GHz) ( a ) and the eigenfrequency f Q ( V 
∗

0 = 0 . 54 V). ( b ) The areas of chaotic dynamics 

are shown by grey shadow. 
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Fig. 5. On the boundary conditions for model (29) - (30) . Left: schematic drawing of 

healthy (1), injured (3), and susceptible to depolarization wave area (2) (penumbra). 

Right: spatial configuration of the model. Closed or non-closed area (2) is modeled 

with periodic (a) or non-periodic (b) boundary conditions. 
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urrent-voltage characteristic (solid curve in Fig. 1 , c ). Fig. 4 , b

hows four largest LE in dependence on f Q , changing between 10

nd 20 GHz. Although the dominant dynamics is periodic, i.e char-

cterised by zero largest LE, the graphs reveal the regions of chaos,

here the largest LE becomes positive. Thus, this analysis shows

hat either changes V 0 or f Q can induce the chaotic dynamics in

he system, which potentially can be used in practical applica-

ions [50] . 

. Spreading depolarization model 

Here, we apply our method to more complex DCS, where a

umber of discrete components are spread across a 2D continuous

edium. As an example we consider a simplified model, which de-

cribes dynamical mechanisms underlying the extreme physiolog-

cal behaviors in brain cortex, such as spreading depression [51] ,

igraine waves [52] , and peri-infarct depolarization waves [53] . 

The essential feature of listed phenomena is the drastic changes

n neuron activity, supported by the massive redistribution of ions

n extracellular space, so called “volume transmission” [54] . The

ater, speaking in physical terms, is provided by the diffusion in

orous medium. While this diffusion process by its nature falls to

he class of continuous-media problems, the pattern of neuronal

ctivity is formed by the discrete set of cells, each possesses their

wn dynamics. Thus, one arrive to specific form of DCS model,

here the discrete set of active units is embedded in continuous

edium. 

.1. Model equations 

At a very simple level, a population of neurons coupled via the

xtracellular space can be modeled by means of one-component

eaction-diffusion system connected with the discrete set of ex-

itable units [13,55] . The former describes the spatial spreading

f depolarization substances (potassium, glutamate) in extracellu-

ar space, while the later stands for the activity of neuronal pop-

lation. In [55] , such a model was implemented with a set of

itzHugh–Nagumo (FHN) model neurons, that are placed in the

odes of 2D space grid, and coupled with each other through the

ontinuous diffusive medium. Each model neuron is assumed to

e located at specific point r i j = (x i , y j ) , x i = ih x , y j = jh y and its
ynamics is described by the ordinary differential equations 

ε v 
dv i j (t) 

dt 
= v i j (t) − v 3 i j (t) / 3 − w i j (t) + z(x i , y j , t) , 

τl 

dw i j (t) 

dt 
= A + B v i j (t) − w i j (t) , (29) 

here v ij ( t ) and w ij ( t ) are the voltage variable and its recovery

ariable, respectively. These variables describe the state of each

ell. The function z ( x, y, t ) is defined on two-dimensional space

 = (x, y ) and describe the temporal changes of extracellular con-

entrations of depolarizing substances,which are supposed to be

preading in space [5] . Therefore, the dynamics of z is described

y the partial differential equation: 

 z 
∂z 

∂t 
= αz �(v ) − z + γ

(
∂ 2 z 

∂x 2 
+ 

∂ 2 z 

∂y 2 

)
, (30)

here 

(v ) = 

1 

2 

(
1 + tanh 

( v 
v s 

))
(31) 

s a sigmoid function that depends on v : at small v s it approaches

ero for v < 0, and unity for v > 0 (see Ref. [55] for details). In spa-

ial domain, at the points r ij occupied by model neurons, variable

 , is supposed to be equal to the voltage variable v ij of specific

odel neuro unit and (31) is applied, while in all other spatial lo-

ations �( v ) was set to zero (no influx to the extracellular space). 

The boundary conditions for z depend on specific problem

nder consideration. The peri-infarct depolarization waves (PIDs)

re typically observed in the form of re-entrant waves circulat-

ng in closed area that surrounds the injured tissue but in turn is

ounded by the healthy one ( Fig. 5 ). At a very basic level, such en-

ironment can be modeled with a rectangular space with mixed

oundary conditions (b.c.). Specifically, the boundary for y coor-

inate was composed from the Neumann b.c. and Dirichlet b.c.

his combination was previously shown to trigger the autonomous

acemaker [5] . The boundary condition for x was periodic, so the

eft edge of simulated area was connected to the right edge, as

hown in the Fig. 5 a. However, the diffusion rate at this junction

ine was assumed to be adjustable down to zero. The later extreme

ase actually provided the diconnected left and right egdes (each

ith Neumann b.c.), as shown in Fig. 5 b. 
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Fig. 6. The spectrum of Lyapunov exponents for the CSD model, containing the 1st 

and the 10th positive LEs, 19th LE (zero Lyapunov exponent), 30th and 50th nega- 

tive LEs ( a ), 2-D distribution of the spatially extended variable z ( x, y, t ) ( b ) and its 

perturbations ( c – g ), corresponded, respectively, to the presented LEs. 
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Computationally, the above described adjustment of boundary

conditions was implemented by means of scale factor k d as fol-

lows: 

ε z 
dz 1 , j 

dt 
= αz �(v 1 , j ) − z 1 , j + γ (z 2 , j − z 1 , j ) 

+ k d γ (z N, j − z 1 , j ) , (32)

ε z 
dz N, j 

dt 
= αz �(v N, j ) − z N, j + γ (z N−1 , j − z N, j ) 

+ k d γ (z 1 , j − z N, j ) . (33)

In (32),(33) z 1, j and z N, j , with j = 1 . . . N refer to left and right

edges of N × N lattice that approximates the modeled medium.

With this, if k d = 1 then left and right edges of model space are

connected like any other locations, while for k d = 0 left and right

edges become disconnected. Below we adjust k d parameter only,

while all other control parameters of the system (29) –(30) were

set according to the previous work [5] as follows: A = 0 . 5 , B = 1 . 1 ,

τl = 1 . 0 , ε z = 1 . 0 , αz = 1 . 1 , ε v = 0 . 004 , γ = 7 . 5 × 10 −4 , v s = 0 . 05 ,

h x = h y = h = 0 . 025 . 

For the chosen set of the control parameters and k d = 1 the sys-

tem demonstrate the complex wave pattern ( Fig. 6 , b ) that consists

of two distinctive areas, one being the nucleation center (right cor-

ner in the figure panel), and the other is filled with propagating

waves. In order to classify this type of the behavior and to charac-

terize it quantitatively, we apply the developed technique of Lya-

punov exponent calculation. 
.2. Lyapunov exponents 

Following the algorithm, given in Section 2 (see step 1), the

eference state of the spreading depolarization model was chosen

s 

 (x, y, t) = (V 11 (x, y, t) , W 11 (x, y, t) , V 12 (x, y, t) , W 12 (x, y, t) , . . . , 

V i j (x, y, t) , W i j (x, y, t) , . . . , 

V NN (x, y, t) , W NN (x, y, t) , z(x, y, t)) T , (34)

here V i j (x, y, t) = v i j (t) and W i j (x, y, t) = w i j (t) , N 

2 is the number

f the FHN oscillators. The scalar product of these states was cal-

ulated via Eq. (9) , where the integration was performed over both

 and y ranges. 

According to step 2, the perturbation of the system state was

ritten in form 

 (x, y, t) = ( ̃  V 11 (x, y, t) , ˜ W 11 (x, y, t) , ̃  V 12 (x, y, t) , ˜ W 12 (x, y, t) , . . . , 

˜ V i j (x, y, t) , ˜ W i j (x, y, t) , . . . , 

˜ V NN (x, y, t) , ˜ W NN (x, y, t) , ̃  z (x, y, t)) T , (35)

In order to describe the evolution of the perturbations,
˜ 
 i j (x, y, t) , ˜ W i j (x, y, t) and ˜ z (x, y, t) (step 3) the linear operator was

btained by the linearizion of Eq. (30) in the vicinity of the refer-

nce state as 

ε v 
∂ ̃  V i j (x, y, t) 

∂t 
= 

˜ V i j (x i , y j , t) − V 

2 
i j (x i , y j , t) ̃  V i j (x i , y j , t) 

− ˜ W i j (x i , y j , t) + ̃

 z (x i , y j , t) , 

l 

∂ ˜ W i j (x, y, t) 

∂t 
= B ̃

 V i j (x i , y j , t) − ˜ W i j (x i , y j , t) , 

ε z 
∂ ̃  z (x, y, t) 

∂t 
= αz �(v ) ̃ v − ˜ z (x, y, t) 

+ γ

(
∂ 2 ˜ z (x, y, t) 

∂x 2 
+ 

∂ 2 ˜ z (x, y, t) 

∂y 2 

)
, (36)

here 

(v ) = 

1 

v s ch 

2 
(v / v s ) . 

(37)

nd 

˜ 
 = 

{
˜ V i j if r = r i j , 

0 if r � = r i j , 
(38)

In order to describe the dynamics of the considered system 50

argest LEs were calculated. For this purpose the set of 50 pertur-

ations was obtained with the help of Gram–Schmidt procedure

step 4). Following step 5 of the algorithm, the set of Eqs. (29) –(33)

nd Eqs. (36) –(38) describing the dynamics of the system state and

ts perturbation, respectively, along with Gram–Schmidt procedure

step 6) were solved numerically to get Lyapunov exponents (step

). 

First trial was performed at the non-closed spatial configuration

s sketched in the Fig. 5 b . Specifically, we have used Neumann

oundary conditions (zero flux through the boundary) for z (0, x )

nd z (1, x ). At the same time, for the upper bound z (0, x ∗), where

 

∗ ∈ [0.375, 0.625], the Dirichlet boundary conditions were used. Fi-

ally, the lateral edges z ( y , 0) and z ( y , 1) were disconnected since

he k d was set to zero. The simulations were performed on the

attice of 40 × 40 (i.e., N = 40 ) interacted oscillators as shown in

ig. 6 . 

Fig. 6 , a demonstrates convergence of the method by presenting

he dependence of selected number of LEs on time t . These graphs

how that after t ≈ 2 × 10 4 (a.u) the values of the LEs almost do not

hange their values. With this, the presence of eighteen positive

yapunov exponents λ ÷λ in the spectrum ( Fig. 6 , a ) reveals the
1 18 
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Fig. 7. The spectrum of Lyapunov exponents for the CSD model ( a ), containing the 

1st, the 2nd, the 10th, the 20th, the 42nd and the 50th LEs, depending on the 

value of k d , the zero-level is shown by the dashed line, the area of parameters, 

corresponding to the transition from the periodically spreading waves to the well- 

developed spatiotemporal chaos is marked by the shadow. The correlation between 

the evolution of the z -variable in the different regions of active media (namely, z ( x 1 , 

y 1 ) and z ( x 0 , y 0 )) ( b,c ) and the momentum spatial distributions z ( x, y ) ( d,e ), corre- 

sponding to the chaotic ( k d = k 1 
d 
) and periodic ( k d = k 2 

d 
) regimes, respectively. The 

locations of the points ( x 1 , y 1 ) and ( x 0 , y 0 ) are shown by the solid circle and the 

solid square, the values of k 1 
d 

and k 2 
d 

are shown in ( a ) by the arrows.. 
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Fig. 8. Power spectra of the oscillations in two selected locations for k 1 
d 

and r 0 = 

(x 0 , y 0 ) (a); for k 1 
d 

and r 1 = (x 1 , y 1 ) (b); for k 2 
d 

and r 0 = (x 0 , y 0 ) (c); and for k 2 
d 

and 

r 0 = (x 1 , y 1 ) (d). 
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patio-temporal chaos developed in this system. Indeed, as one can

ee from Fig. 6 , b , the model shows the complex spatio-temporal

ehavior. The key feature of this chaos is the distinctive localiza-

ion of the high-amplitude perturbations near the right corner of

gure panels (see Fig. 6 , c,d ), exactly at the wave nucleation center

hat is observed in panel b . It confirms the hypothesis that irregu-

ar spatio-temporal pattern is generated within this area and then

preads out to occupy all the available space. During the next trial,

 d was gradually increased from zero to k d = 1 in order to observe

nd quantify the changes in spatio-temporal dynamics caused by

he evolution of modeled geometry to cylindric one as shown in

ig. 5 a . 

In Fig. 7 , a the selected Lyapunov exponents (from the whole

pectrum) are shown, being the 1st, the 2nd, the 10th, the 20th,

he 42nd and the 50th LEs, plotted against the values of k d ∈ [0,

]. With k d increasing, until k d = k 1 
d 

= 0 . 2 no considerable changes

re observed, fully developed spatio-temporal chaos persists. For

 d > k 1 
d 

the values of all LEs behave highly irregular, showing mul-

iple jumps between negative and positive values, except the high-

st one, �1 which remains positive. In the k d interval near the

 d ≈ 0.4 there is an interesting example of smooth rise of LEs show-

ng the gradual increase of the “degree of chaoticity”. With further

ncrease of k d non-monotonic behavior vanishes. For k d > k 2 
d 

two
argest Lyapunov exponent are very close to zero, so one can clas-

ify this spatio-temporal dynamics as quasiperiodic one. 

In Fig. 7 b–e the representative snapshots of z and the cross-plot

etween the z values in two selected locations (namely, z ( x 1 , y 1 ) vs

 ( x 0 , y 0 )) are shown for k 1 
d 

= 0 . 2 and k 2 
d 

= 0 . 6 , that bound the tran-

ition area as described above. One can make sure that at k 1 
d 

there

s the complex-shaped wave pattern ( d ) with lack of obvious cor-

elation between two analyzed points ( b ), while on panels ( c ) and

 e ) there is the well shaped regular pattern, formed by the run-

ing waves. The corresponding power spectra of oscillations z ( r , t )

n these selected locations r 0 = (x 0 , y 0 ) and r 1 = (x 1 , y 1 ) are shown

n Fig. 8 . Fig. 8 , a,b display the spectrum of oscillations z ( r 0 , t ) and

 ( r 1 , t ), respectively, calculated for k d = k 1 
d 
. Both spectra are con-

inuous and broadband, as it is typical for chaotic oscillations. For

 d = k 2 
d 
, the character of the spectra dramatically changes, and for

oth r 0 ( Fig. 8 c) and r 1 ( Fig. 8 d) the spectra are discrete, thus

videncing of regular oscillations in the system. 

Within the interval k d ∈ (0.28; 0.6) the Lyapunov exponents be-

avior reflects the multiple transitions between different regular
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Fig. 9. The momentum spatial distributions z ( x, y ) corresponding to the regular (a, 

c) and chaotic (b, d) regimes, obtained for k d = 0 . 6 (a), k d = 0 . 5 (b), k d = 0 . 267 (c), 

k d = 0 . 261 (d). 
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and irregular types of the system dynamics. Some of typical dy-

namical regimes observed within this range of k d -parameter value

are given in Fig. 9 . When the value of k d parameter is relatively

large ( k d ∈ (0.36; 0.6)) the smooth behavior of Lyapunov exponents

is mostly observed, although the transition from regular to chaotic

regimes (and visa verse) takes place (see Fig. 9 a,b ). For this types

of dynamics both the regular and irregular regimes are associ-

ated with the propagation of the practically linear wave fronts. For

the rather small values of k d (namely, k d ∈ [0.26; 0.34]) the highly

irregular dependence of LEs curves on k d -parameter takes place,

with the alternating regular and irregular types of dynamics being

characterized by the spiral wave propagation (see Fig. 9 c,d ). 

5. Conclusions 

In conclusion, we suggest a technique to calculate the spec-

trum of LEs for a wide class of the dynamical systems, which

are determined by set of ODEs coupled with PDEs. We have dis-

cussed an approach to introduce the reference state and its per-

turbations, which allows a reliable estimation of the perturbation

growth/decay rate. The proposed method was applied to the two

representative nonlinear DCSs with media of different dimension. 

First, we considered a DCS with 1D medum, which models the

charge transport in a TED connected with an external lumped RLC-

circuit. The proposed method was able to unambiguously recognise

the transition between regular an chaotic charge dynamics with

variation of the bias voltage applied to the TED and of the resonant

frequency of the RLC-circuit. These transitions were also confirmed

by analysis of the spatio-temporal patterns in the charge transport

along the TED as well as by calculation of the power spectral den-

sity of the current oscillations generated by the device. 

Next, we tested our method by analysing the stability of dy-

namical patterns in DSC with 2D media describing neuron-to-

neuron signalling via redistribution of ions in extracellular space.

The method allowed to reveal how the changes in boundary con-

ditions affect the regularity of the depolarization spreading. In

particular, we found that the appearance of turbulent behaviour

in ions redistribution within the extracellular space non-trivially

depends on the penetrability of the medium boundaries. These
nteresting finding, supported by analysis of patio-temporal pat-

erns and calculation of the power spectrum of the concentration

scillations, is required more thorough investigation, which is be-

ond the scope of the presented paper. 

Generally, the developed approach bridges the gap in stabil-

ty analysis of complex composite dynamical models consisting of

oth extended and lumped elements, and can thus be used in di-

erse areas of modern interdisciplinary science dealing with such

ystems. 

cknowledgments 

This work has been supported by Russian Science Foundation

grant 14-12-00224 ). 

eferences 

[1] Eikenberry S . A tumor cord model for Doxorubicin delivery and dose optimiza-

tion in solid tumors. Theor Biol Med Modell 2009;6:6 . 
[2] Soltanova KN , Prykarpatski AK , Blackmorec D . Long-time behavior of so-

lutions and chaos in reaction-diffusion equations. Chaos, Solitons Fractals
2017;99:91–100 . 

[3] Eisenhofer S , Efendiev MA , Otani M , Schulz S , Zischka H . On an ODE-PDE cou-

pling model of the mitochondrial swelling process. Discrete and Continuous
Dyn Syst - SerB 2015;20(4):1031–57 . 

[4] Claus J , Friedmann E , Klingmuller U , Rannacher R , Szekeres T . Spatial aspects
in the smad signaling pathway. J Math Biol 2013;67(5):1171–97 . 

[5] Postnov DE , Postnov DD , Schimansky-Geier L . Self-terminating wave patterns
and self-organized pacemakers in a phenomenological model of spreading de-

pression. Brain Res 2012;1434:200–11 . 
[6] Andersen UL , Neergaard-Nielsen JS , van Loock P , Furusawa A . Hybrid discrete-

and continuous-variable quantum information. Nat Phys 2015;11:713–19 . 

[7] Hramov AE , Koronovskii AA , Kurkin SA , Makarov VV , Gaifullin MB , Alek-
seev KN , et al. Subterahertz chaos generation by coupling a superlattice to a

linear resonator. Phys Rev Lett 2014;112:116603 . 
[8] Daafouz J , Tucsnak M , Valein J . Nonlinear control of a coupled PDE/ODE system

modeling a switched power converter with a transmission line. Syst Control
Lett 2014;70:92–9 . 

[9] Schwartz IB , Morgan DS , Billings L , Lai Y-C . Multi-scale continuum mechan-

ics: from global bifurcations to noise induced high-dimensional chaos. Chaos
2004;14(2):373–86 . 

[10] Gabe IT . Arterial blood flow by analogue solution of the Navier-Stokes equa-
tion. Phys Med Biol 1965;10(2):271–80 . 

[11] DeVault K , Gremaud PA , Novak V , Olufsen MS , Vernieres G , Zhao P . Blood
flow in the circle of willis: modeling and calibration. Multiscale Model Simul

2008;7(2):888–909 . 

[12] Lo W-C , Zheng L , Nie Q . A hybrid continuous-discrete method for stochastic
reaction diffusion processes. R Soc Open Sci 2016;3(9):160485 . 

[13] Postnov DE, Chetverikov AP, Postnov DD. Stimulus-induced response patterns
of medium-embedded neurons. Eur Phys J Spec Top 2010;187:241–53. doi: 10.

1140/epjst/e2010-01289-8 . 
[14] Berthier F , Diard J-P , Montella C . Numerical solution of coupled systems of

ordinary and partial differential equations. application to the study of electro-

chemical insertion reactions by linear sweep voltammetry. J Electroanal Chem
2001;502:126–31 . 

[15] García S , niguez-de-la Torre II , Pérez S , Mateos J , González T . Numerical study
of sub-millimeter Gunn oscillations in InP and GaN vertical diodes: depen-

dence on bias, doping, and length. J Appl Phys 2013;114:074503 . 
[16] Yurchenko VB , Yurchenko LV . Bistability and hysteresis in the emergence of

pulses in microstrip Gunn-diode circuits. AIP Adv 2014;4:127126 . 

[17] Shiau Y-H , Cheng Y-C . Hybrid electric-field domains leading to spatiotemporal
chaos in n-GaAs. Phys Rev B 1997;56(15):9248 . 

[18] Zhou L , Chen Z , Wang Z , Wang J . On the analysis of local bifurcation and topo-
logical horseshoe of a new 4D hyper-chaotic system. Chaos, Solitons Fractals

2016;91:148–56 . 
[19] Singh JP , Roy BK . The nature of Lyapunov exponents is (+, +, ,). is it a hyper-

chaotic system? Chaos, Solitons Fractals 2016;92:73–85 . 

[20] Zamanie N , Ataei M , Niroomand M . Analysis and control of chaotic behavior
in boost converter by ramp compensation based on Lyapunov exponents as-

signment: theoretical and experimental investigation. Chaos, Solitons Fractals
2015;81:20–9 . 

[21] Li Z , Sun S , Huang Y . Exploring inventory order policies impact under the
non-negative constraint of order quantity: system stability, service level, and

cost,. Chaos, Solitons Fractals 2017;103:111–22 . 
[22] Hramov AE , Koronovskii AA , Kurovskaya MK , Moskalenko OI . Analytical expres-

sion for zero Lyapunov exponent of chaotic noised oscillators,. Chaos, Solitons

Fractals 2015;78:118–23 . 
[23] Gomez IS . Lyapunov exponents and poles in a non Hermitian dynamics,. Chaos,

Solitons Fractals 2017;99:155–61 . 
[24] Upadhyay RK , Mondal A . Synchronization of bursting neurons with a slowly

varying d. c. current,. Chaos, Solitons Fractals 2017;99:195–208 . 

http://dx.doi.org/10.13039/501100006769
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0001
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0001
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0002
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0002
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0002
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0002
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0003
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0003
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0003
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0003
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0003
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0003
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0004
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0004
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0004
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0004
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0004
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0004
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0005
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0005
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0005
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0005
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0006
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0006
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0006
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0006
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0006
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0007
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0007
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0007
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0007
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0007
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0007
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0007
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0007
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0008
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0008
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0008
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0008
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0009
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0009
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0009
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0009
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0009
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0010
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0010
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0011
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0011
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0011
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0011
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0011
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0011
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0011
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0012
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0012
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0012
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0012
http://dx.doi.org/10.1140/epjst/e2010-01289-8
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0014
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0014
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0014
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0014
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0015
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0015
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0015
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0015
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0015
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0015
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0016
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0016
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0016
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0017
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0017
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0017
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0018
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0018
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0018
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0018
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0018
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0019
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0019
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0019
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0020
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0020
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0020
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0020
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0021
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0021
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0021
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0021
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0022
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0022
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0022
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0022
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0022
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0023
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0023
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0024
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0024
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0024


V.A. Maximenko et al. / Chaos, Solitons and Fractals 104 (2017) 228–237 237 

[  

 

[  

 

 

[  

[  

 

[  

 

 

 

 

[  

 

[  

 

 

[  

 

 

[  

 

[  

 

[  

 

[  

[  

 

 

[  

[  

[  

 

 

[  

 

[  

 

[  

 

 

[  

[  

[  

[  

 

25] Kuptsov PV . Computation of Lyapunov exponents for spatially extended sys-
tems: advantages and limitations of various numerical methods. Appl Nonlin-

ear Dyn 2010;18(5):80–92 . 
26] Yang HL , Radons G . Lyapunov modes in extended systems. Phil Trans R Soc A

2009;367:3197–212 . 
[27] Koronovskii AA , Hramov AE , Maximenko VA , Moskalenko OI , Alekseev KN ,

Greenaway MT , et al. Lyapunov stability of charge transport in miniband semi-
conductor superlattices. Phys Rev B 2013;88:165304 . 

28] Hramov AE , Koronovskii AA , Maximenko VA , Moskalenko OI . Computation of

the spectrum of spatial Lyapunov exponents for the spatially extended beam–
plasma systems and electron-wave devices. Phys Plasmas 2012;19(8):082302 . 

29] Filatova AE, Hramov AE, Koronovskii AA, Boccaletti S. Synchronization in net-
works of spatially extended systems. Chaos 2008;18(2):023133. doi: 10.1063/1.

2940685 . 
30] Moskalenko OI , Phrolov NS , Koronovskii AA , Hramov AE . Synchronization

in the network of chaotic microwave oscillators. Eur Phys J Spec Top

2013;222:2571–82 . 
[31] Benettin G , Galgani L , Giorgilli A , Strelcyn J-M . Lyapunov characteristic expo-

nents for smooth dynamical systems and for Hamiltonian systems: a method
for computing all of them. P. I. Theory. P. II. Numerical application. Meccanica

1980;15:9–30 . 
32] Wolf A , Swift J , Swinney HL , Vastano J . Determining Lyapunov exponents from

a time series. Physica D 1985;16:285 . 

[33] Matsumoto H , Yokoyama H , Summers D . Computer simulations of the chaotic
dynamics of the Pierce beam–plasma system. Phys Plasmas 1996;3(1):177 . 

34] Finn JM , del Castillo-Negrete D , Barnes DC . Destabilization of the m = 1 dio-
cotron mode in non-neutral plasmas. Phys Rev Lett 20 0 0;84(11):2401–4 . 

[35] Klinger T , Schroder C , Block D , Greiner F , Piel A , Bonhomme G , et al. Chaos
control and taming of turbulence in plasma devices. Phys Plasmas

2001;8(5):1961–8 . 

36] Hramov AE , Koronovskii AA , Rempen IS . Controlling chaos in spatially ex-
tended beam-plasma system by the continuous delayed feedback. Chaos

2006;16(1):013123 . 
[37] Amann A , Schlesner J , Wacker A , Schöll E . Chaotic front dynamics in semicon-

ductor superlattices. Phys Rev B 2002;65(19):193313 . 
38] Greenaway MT , Balanov AG , Schöll E , Fromhold TM . Controlling and enhancing

terahertz collective electron dynamics in superlattices by chaos-assisted mini-

band transport. Phys Rev B 2009;80:205318 . 
39] Brondijk JJ , Spijkman M , van Seijen F , Blom PW , de Leeuw DM . For-

mation of inversion layers in organic field-effect transistors. Phys Rev B
2012;85(16):165310 . 
40] Godfrey BB . Oscillatory nonlinear electron flow in Pierce diode. Phys Fluids
1987;30:1553 . 

[41] Klinger T , Latten A , Piel A , Bonhomme E , Pierre T . Chaos and turbulence stud-
ies in low–β plasmas. Plasma Phys Control Fusion 1997;39:145 . 

42] Madon A , Klinger T . A model for the bifurcations in plasma drift–waves. Phys-
ica D 1997;102:355 . 

43] Hramov AE , Rempen IS . Investigation of the complex dynamics and regime
control in Pierce diode with the delay feedback. Int J Electron 2004;91:1 . A.

Madon, T. Klinger, A model for the bifurcations in plasma drift–waves, Physica

D 102 (1997) 355 
44] Esaki L , Tsu R . Superlattices and negative differential conductivity in semicon-

ductors. IBM J Res Dev 1970;14(1):61–5 . 
45] Shik AY . Superlattices-periodic semiconductor structures. Sov Phys Semicond

1975;8:1195 . 
46] Wacker A . Semiconductor superlattices: a model system for nonlinear trans-

port. Phys Rep 2002;357:1–111 . 

[47] Fromhold TM , Patane A , Bujkiewicz S , Wilkinson PB , Fowler D , Sherwood D ,
et al. Chaotic electron diffusion through stochastic webs enhances current flow

in superlattices. Nature 2004;428:726–30 . 
48] Alexeeva N , Greenaway MT , Balanov AG , Makarovsky O , Patane A , Gaifullin MB ,

et al. Controlling high-frequency collective electron dynamics via single-parti-
cle complexity. Phys Rev Lett 2012;109(2):024102 . 

49] Hramov AE , Makarov VV , Maksimenko VA , Koronovskii AA , Balanov AG . Inter-

mittency route to chaos and broadband high-frequency generation in semicon-
ductor superlattice coupled to external resonator. Phys Rev E 2015;92:022911 . 

50] Li W , Reidler I , Aviad Y , Huang Y , Song H , Zhang Y , et al. Fast physical ran-
dom-number generation based on room-temperature chaotic oscillations in

weakly coupled superlattices. Phys Rev Lett 2013;111:044102 . 
[51] Charles AC , Baca SM . Cortical spreading depression and migraine. Nat Rev Neu-

rol 2013;9(11):637–44 . 

52] Tfelt-Hansen PC . History of migraine with aura and cortical spreading depres-
sion from 1941 and onwards. Cephalalgia 2010;30(7):780–92 . 

53] Heiss WD . The ischemic penumbra: how does tissue injury evolve? Ann N Y
Acad Sci 2012;1268:26–34 . 

54] Agnati L , Zoli M , Strömberg I , Fuxe K . Intercellular communication in the brain:
wiring versus volume transmission. Neuroscience 1995;69(3):711–26 . 

55] Postnov DE , Muller F , Schuppner RB , Schimansky-Geier L . Dynamical struc-

tures in binary media of potassium-driven neurons. Phys Rev E 2009;80(3 Pt
1):031921 . 

http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0025
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0025
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0026
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0026
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0026
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0027
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0027
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0027
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0027
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0027
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0027
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0027
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0027
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0028
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0028
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0028
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0028
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0028
http://dx.doi.org/10.1063/1.2940685
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0030
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0030
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0030
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0030
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0030
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0031
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0031
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0031
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0031
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0031
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0032
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0032
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0032
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0032
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0032
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0033
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0033
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0033
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0033
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0034
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0034
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0034
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0034
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0035
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0035
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0035
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0035
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0035
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0035
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0035
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0035
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0036
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0036
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0036
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0036
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0037
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0037
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0037
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0037
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0037
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0038
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0038
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0038
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0038
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0038
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0039
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0039
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0039
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0039
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0039
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0039
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0040
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0040
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0041
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0041
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0041
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0041
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0041
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0041
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0042
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0042
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0042
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0043
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0043
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0043
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0043
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0044
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0044
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0044
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0045
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0045
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0046
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0046
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0047
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0047
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0047
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0047
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0047
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0047
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0047
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0047
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0048
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0048
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0048
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0048
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0048
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0048
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0048
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0048
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0049
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0049
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0049
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0049
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0049
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0049
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0050
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0050
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0050
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0050
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0050
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0050
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0050
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0050
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0051
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0051
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0051
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0052
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0052
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0053
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0053
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0054
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0054
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0054
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0054
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0054
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0055
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0055
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0055
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0055
http://refhub.elsevier.com/S0960-0779(17)30350-8/sbref0055

	Lyapunov analysis of the spatially discrete-continuous system dynamics
	1 Introduction
	2 Calculation of the Lyapunov exponents for spatially discrete-continuous systems
	3 Chaos in RLC-TED circuit
	3.1 Model
	3.2 Lyapunov analysis

	4 Spreading depolarization model
	4.1 Model equations
	4.2 Lyapunov exponents

	5 Conclusions
	 Acknowledgments
	 References


