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ABSTRACT

We discuss the ability to recognize the electrical activity of the brain associated with movements by the arms/legs
and with imagination of such movements. Conducting experiments with a group of untrained volunteers, we show
that real and imaginary movements are clearly detected using the scaling exponent of the detrended fluctuation
analysis for the majority of EEG channels (usually 28-31 out of 33). Although this ability is shown regardless of
the type of movements, the case of leg movements provided a slightly higher recognition results. This conclusion
is supported by numerical estimations based on two quantitative measures.
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1. INTRODUCTION

The development of brain-computer interfaces (BCIs) is the topic of intensive research in the field of neuro-
physiology and related sciences.1 The first ideas related to the creation of devices that can provide actions in
the surrounding world, controlled by mental intentions, were limited by the capabilities of existing processors
and general knowledge about the dynamics of the brain. The main achievements in the creation of BCIs are
related to the last two decades, when many non-invasive devices were proposed.2–6 Such devices provide on-line
recognition of various patterns of the multichannel electroencephalogram (EEG), which are further transformed
into control commands for the hardware. Examples of the developed devices include BCI for controlling the
movement of cursor on the monitor screen,7 communication devices for fully paralyzed people,8 etc. The recent
review paper9 summarizes the current achievements in the development of non-invasive BCIs.

An important part of every BCI is software that provides identification of mental intentions by processing
multichannel EEG-data. This software should recognize patterns associated, e.g., with the imaginations of
different types of movements and separate them from the background EEG. This is a very complicated problem,
taking into account the high variability of the electrical brain activity, even at rest. Moreover, the operator must
have experience when using BCI to generate commands that will be clearly recognized. Due to this, experimental
studies with BCI are mainly carried out for trained volunteers to obtain more stable results. Nevertheless, even
for untrained people, it is possible to distinguish between background EEG and patterns associated with real
and imaginary movements. In resent publications,10,11 we demonstrated the ability to provide such a separation
for one type of movement (e.g., a rise of the right arm) using two data processing methods, the wavelet-based
multifractal formalism12,13 and the detrended fluctuation analysis (DFA).14,15 Both of these approaches provided
similar results, but the second approach allows to significantly decrease the computation time, which is important
for on-line recognition. This is the main reason, why DFA was chosen for data processing.

Unlike previous studies, here we compare different types of movements, namely movement by the left/right
arm and left/right leg. We consider the case of real movements and their imaginations aiming to identify which
types of movements are easier to imagine and recognize in the further processing of data based on DFA. We will
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show that the differences are rather subjective and depend on the operator. Nevertheless, the leg movements are
separated for more EEG channels than arm movements, and the quality of their separation is somewhat better,
as confirmed by the quantitative measures.

2. MATERIALS AND METHODS

2.1 Experiments

The experiments were conducted in healthy volunteers (men and women, n=16) aged 19 to 43 years in a specially
equipped laboratory. The protocol was approved by the local research ethics committee of the Yuri Gagarin State
Technical University of Saratov. Multichannel EEGs were acquired using the electroencephalograph “BE Plus
LTM” (EB Neuro SPA), which has registration certificate No. FSZ 2011/10629 of 20.09.2011 from the Russian
Federation Federal Service of Health Care and Social Development Control. The equipment used complies with
the certificates UNI EN ISO 9001/ISO 9001:2008, EN 46001 ISO 13485:2012, QSR 21 CFR Part 820 of the
Federal Law. In addition to the standard 10-20 setup, we used intermediate electrodes with 33 channels for each
volunteer.

The experiments included background measurements (at the beginning and at the end, each consisting of 5
minutes), and the following tasks: a slow rise of the left arm (LA) in the shoulder joint, a similar rise of the
right arm (RA), a slow rise of the left leg (LL), a similar rise of the right leg (RL), as well as the imagination
of these procedures (imaginary movement of LA, RA, LL and RL). Movement or imagination was performed
after a sound signal, and the brain activity was recorded for 3 seconds. Each experiment included 100 records
of each type of movement and its imagination, which were divided into sessions consisting of 20 repetitive
movements/imaginations of each type. Each session was accompanied by a short instruction on the monitor
screen.

2.2 Data analysis

The recognition algorithm used in this study is based on the detrended fluctuation analysis,14,15 which is a fairly
universal approach for the analysis of nonstationary processes16,17 being simpler compared to wavelet-based
tools.18,19 This method performs the transition from the measured time series x(i), i = 1, . . . , N to the profile

y(k) =
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which is further divided into segments of length n and the linear trend yn(k) in each segment is estimated with
the least squares approach. The root mean-square fluctuation F (n) around this trend
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shows a power-law dependence with the scaling exponent α, which relates to the exponents describing the decay
of the correlation function or the frequency dependence of the power spectrum. A more detailed description of
the algorithm is given in the studies by Peng et al.14,15

Comparative analysis of different types of movements with the DFA approach was based on two main quan-
tities:

(i) the number of channels K where a significant difference was found between real and imaginary movements
(Mann-Whitney test, p<0.01),

(ii) the separability value S of two types of movement, estimated as

S =
| αRe − αIm |

ERe + EIm

, (3)

where αRe ± ERe and αIm ± EIm are mean values with standard errors for real and imaginary movements,
respectively. Both measures, K and S, are evaluated for each type of movements: LA, LL, RA and RL.
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3. RESULTS AND DISCUSSION

In an attempt to confirm the ability of DFA to recognize real and imaginary movements, we considered several
examples of experimental records, for which a range of scales was established, suitable for separating these two
types of movements. Figure 1 shows typical dependencies of the root mean-square fluctuations F (n) in a double
logarithmic plot. This Figure illustrates that F (n) is a power-law dependence in accordance with the a-priori
assumptions (2), and the scaling exponent (and, therefore, the slope of lgF vs. lg n differs between real and
imaginary movements).
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Figure 1. The dependencies of lgF vs. lg n for an example of EEG recording (the case of real and imaginary movement
by the left arm).

Further, we analyzed how the separation between real and imaginary movements depends on the type of
movement. For this purpose, we estimated the S measure for every channel for each volunteer. Figure 2
illustrates an example of the results obtained for an arbitrary chosen EEG record. Here we observe a reliable
separation (S>1) between real and imaginary movements – for arm movements (both left and right) and for leg
movements (also both left and right). This separation occurs in all channels (33 out of 33) for LA, RA and RL
and for the most channels (30 out of 33) for LL.
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Figure 2. Estimation of S-measure for EEG-recording in one volunteer. Mean values of S in each channel are given for
different types of movements.

A comparative analysis of the results for all volunteers showed that of the separation depend on the subject.
Thus, for some volunteers, a better separation was reached for the left arm, for other volunteers the left leg
movements provided a stronger inter-group differentiation. Regardless on the subject, all the experiments proved
that real and imaginary movements can be clearly separated, and consideration of a large number of channels
allows an authentic separation for most of them. Statistical analysis shows that the number of such channels
usually ranges between 28 and 31, and there is a slightly better separation of leg movements (see results for LL
compared to LA, and for RL compared to RA – Figure 3).
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Figure 3. Results of statistical analysis of the measure K for each type of movements (averaging over all recordings for
16 volunteers).

Figure 4 confirms this conclusion for measure (3) that shows the correlation with the K-value given in Figure
3. Despite some variability of S for different subjects and repetitive experiments, the value of S strongly exceeds
the level of S=1, which is associated with non-significant inter-group separation. Therefore, the recognition of
imaginary movements in comparison with real movements is obvious, independently of the type of movement.
According to our estimations, the consideration of leg movements may be preferable due to the larger values of
both, K and S. This can be explained by the large amplitude of the arms rise, which can affect the recording
equipment. However, even in this case, detection of movements is provided. Note that such a separation is
observed not only between real and imaginary movements, but also between imaginary movements and the
background EEG. Although the number of channels with good separation between the related EEG patterns
varies, the separation is also verified for each type of movement.

LA LL RA RL
2.0

3.0

4.0

5.0

6.0

S  

Figure 4. Results of statistical analysis of the measure S for each type of movements (averaging over all recordings for 16
volunteers).

4. CONCLUSION

We discussed the problem of separation between EEG-patterns associated with movements by the arm/leg and
with their imagination. In an effort to show the recognition abilities of the detrended fluctuation analysis for
this purpose, we considered a group of 16 volunteers of different ages and four types of movements (left/right
arm and left/right leg). In addition to real movements, the imagination of this procedure was performed and the
related multichannel EEGs were processed. We demonstrated the ability to separate between real and imaginary
movements for all types of motor functions under consideration. Despite the results of the separation are subject-
dependent, a reliable separation was achieved for the majority of channels (28–31 out of 33). Analysis of leg
movements provided somewhat better separation results.
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