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One of the most important tasks of modern science
in the field of network structures consists in studying
the regimes of synchronization between the interact�
ing elements of networks [1, 2]. Investigation of the
interaction between elements of complex real systems
frequently encounters a lack of information on the
vectors of state of some network nodes, and so
researchers are dealing with total signals generated by
groups of interacting elements [3, 4]. An illustrative
example of such situations is offered by the study of
pathological and cognitive brain activity by magne�
toencephalography and electroencephalography tech�
niques [5–8], where detected signals received from
various regions of the brain represent an integral activ�
ity of large neuronal ensembles.

At the same time, problems encountered in diag�
nostics of synchronous regimes in neuronal networks
of the brain are of considerable interest for studying
pathological activity—in particular, epilepsy—that is
characterized by hypersynchronous activity of inter�
acting neurons [4, 5, 9, 10].

This Letter presents the results of investigation of
the possibility of determining the degree of synchroni�
zation of a complex network of interacting elements
with the aid of integral characteristics representing
total activities of various parts of the system. In addi�
tion, we analyze the possible loss of information about
the system in this approach.

The present investigation is based on the Kuramoto
model, which was originally proposed in 1975 [11] for
mathematical description of the collective dynamics
of chemical and biological oscillators [12] and now is
one of the most widely used network models. In recent
years, various modifications of this model of a network
of phase oscillators have been applied to the analysis of

clusterization and synchronization processes—in par�
ticular, in neuronal networks and social systems [13].

Let us consider a network comprising N = 200 cou�
pled oscillators (nodes). Every ith node of the network
is characterized by phase ϕi and interacts with all the
other N – 1 nodes. The dynamics of each oscillator is
described by the following equation:

(1)

where ωi are randomly set real frequencies in the [1,
10] interval, wij is the weight of link between the ith and
jth nodes, and λ is the coupling strength. The initial
phases of interacting elements are randomly set and
uniformly distributed over the [–π, π] segment; the
weights of links between nodes are also randomly dis�
tributed.

In order to quantitatively characterize the degree of
network synchronization, let us introduce the syn�
chronization index that measures the degree of phase
coherency of the oscillators [14, 15]:

(2)

where ϕi is the phase of the ith oscillator and T is the
length of a time series used for modeling processes in
the network. Values of the synchronization index close
to zero imply that a very small number of oscillators
are in a regime of synchronization, an increase in σ
indicates that a growing number of oscillators are syn�
chronized, and σ = 1 corresponds to complete phase
synchronization in the network under consideration.

For analysis of synchronization in terms of integral
characteristics, we introduce the following functions
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representing signals averages over a certain subset of
network elements:

(3)

where M is the number of elements over which the sig�
nal is averaged and k is the serial number of the first
element in this subset. The entire network is divided
into nonoverlapping subsets containing equal numbers
M of elements. Each signal xn(t) is defined as

(4)
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where ϕi is the phase of the ith oscillator at time
moment t; in what follows, the amplitude of every
oscillator is assumed to be unity (A = 1).

The introduced characteristics (3) can be treated as
analogous to the electroencephalographic signal that
characterizes the contribution of a group of oscillators
(neurons of a local brain region close to the receiving
electrode [16]) to the integral signal measured in
experiment. In order to study the degree of synchroni�
zation of a system using its integral characteristics, we
calculate the integral synchronization index by using
Eq. (2), where phases of separate elements are
replaced by the phases of total signals taken from sub�
sets of M elements.

Figure 1 shows plots of the synchronization index
and integral synchronization index versus the strength
of coupling between interacting oscillators. As can be
seen, the synchronization index exhibits a nonlinear
behavior by weakly increasing with the coupling
strength up to λ ≈ 4.7 and then growing sharply with
further increase in λ.

Let us now consider the behavior of the integral
synchronization index. When the entire network of
N = 200 elements is divided into subsets of M = 50 ele�
ments, we obtain four macroscopic signals which are
used to calculate the integral index. These σ values are
significantly greater than those obtained using sepa�
rate elements, which is evidence of a significant loss of
information on the dynamics of coupled oscillators. In
addition, the shape of the plot also strongly changes,
since the integral synchronization index exhibits
almost linear increase with the coupling strength. In
the region of λ > 5, the difference between two depen�
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Fig. 1. Plots of synchronization index σ vs. coupling
strength λ for different sizes of subsets M = 1 (black sym�
bols) and M = 50 (open symbols) in a network of N =
200 elements.
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Fig. 2. Two�parametric dependence of integral synchronization index σ on oscillator coupling strength λ and number M of ele�
ments in a subset generating a macroscopic signal. Number of network elements: N = 200.
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dences decreases. This circumstance indicates that
estimation of the degree of system synchronization
with the aid of integral characteristics leads to loss of
information on asynchronous oscillators.

In order to study the possibility of determining the
degree of synchronization from integral characteris�
tics in more detail, we have carried out a two�paramet�
ric study of the integral synchronization index as
dependent on coupling strength λ and size M of a sub�
set generating the macroscopic signal. The results are
presented in Fig. 2, where the level lines correspond to
σ = 0.3, 0.5, and 0.7. As can be seen from these data,
deviations from the true value (synchronization index
calculated using the phases of each element) linearly
grow with increasing number of elements in the subset.

In conclusion, we have considered the possibility of
studying synchronization regimes in a complex net�
work with the aid of integral characteristics (macro�
scopic signals) taken from a large number of interact�
ing oscillators. The dependence of integral synchroni�
zation index σ on the size of the ensemble of
oscillators from which the macroscopic signal is
received has been determined. It is shown that, as size
M of this ensemble increases, the dependence of σ on
the strength of coupling between oscillators tends
toward linear. It is established that the increase in M is
accompanied by the growing loss of information about
asynchronous oscillators, which shows that this
method of determination of the degree of synchroni�
zation is correct in application to networks of strongly
coupled elements.
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