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ABSTRACT

We present a hypergraph-based framework for analyzing functional brain networks in children with autism spectrum disorder (ASD) using
resting-state electroencephalography data. Moving beyond conventional multilayer network approaches, our method captures previously
undetectable higher-order connectivity patterns through a two-stage analysis: (1) constructing multilayer networks via recurrence quantifi-
cation analysis to model within- and cross-frequency interactions and (2) transforming these networks into hypergraphs to better represent
complex neural relationships. Our results identify distinctive connectivity signatures in ASD, particularly in bilateral frontal regions, with
hypergraph representations revealing patterns obscured in traditional analyses. Most significantly, hypergraph-derived features achieved
81% classification accuracy (F1-score) using support vector machines, outperforming 57% achieved with multilayer network features. These
findings demonstrate how hypergraphs can provide more stable and informative biomarkers for ASD, offering both a powerful analytical
framework for studying neurodevelopmental disorders and a promising pathway toward more objective diagnostic tools. The improvement
in classification performance underscores the clinical potential of this approach.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0279835

Autism spectrum disorder (ASD) is a complex neurodevelopmen-
tal condition that affects communication, behavior, and social
interaction. Diagnosing ASD often relies on behavioral observa-
tions, which can be subjective and delayed. Using resting-state
electroencephalography (EEG) recordings, we developed a special
type of network model called a hypergraph that better captures
complex brain interactions compared to traditional methods. By
transforming traditional multilayer brain networks into hyper-
graphs, we uncovered higher-order connectivity signatures that
distinguish children with ASD from typically developing peers
with 81% accuracy—a significant leap over conventional meth-
ods. The findings highlight disrupted connectivity in frontal
brain regions and demonstrate how advanced mathematical mod-
els can reveal hidden neural patterns, offering a promising
pathway toward more objective and early diagnostic tools for
ASD. This work bridges complex network theory and clinical
practice, demonstrating how advanced mathematics can solve

real-world medical challenges. This work represents an important
step toward developing objective tools for autism diagnosis and
understanding.

I. INTRODUCTION

Magneto- and electroencephalography (M/EEG) recordings
capture complex brain activity that is fundamentally composed
of a superposition of neuronal oscillations across a broad range
of frequencies, often referred to as brain rhythms. These distinct
rhythms are not merely passive background noise; rather, they are
believed to be the electrophysiological underpinnings of function-
ally specialized brain activity. Particularly, slow theta oscillations
(4-8Hz) are implicated in facilitating large-scale neuronal inter-
actions essential for human memory formation and sensorimotor
integration."” In contrast, brain-wide alpha (8-12Hz) and beta
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(15-30 Hz) oscillations are believed to underpin top-down com-
munication processes, sensory processing, and the mechanisms
involved in perceptual decision-making.>"

Furthermore, the interaction between neuronal oscillations
across different frequency bands, a phenomenon known as cross-
frequency coupling (CFC), plays a critical role in establishing pre-
cise spike-timing relationships.” This coordinated activity across
frequencies facilitates the dynamic organization of neuronal ensem-
bles that are synchronized within their respective frequency bands.®
Specifically, CFC enables the temporal coordination of neural fir-
ing, allowing for communication and information transfer between
neuronal populations operating at different oscillatory frequencies.”
This intricate interplay of oscillations and CFC is thought to be a
fundamental mechanism for integrating information across various
spatial and temporal scales within the brain and, thus, is essential
for complex cognitive processes.*” So, the phase of slower oscilla-
tions might modulate the amplitude or power of faster oscillations,
allowing for nested hierarchies of neural activity that support flexible
and adaptive behavior. For example, gamma (30-90 Hz) oscilla-
tions are associated with local processing, while theta oscillations are
thought to play a role in long-range communication, and interac-
tions between these rhythms are implicated in cognitive processes,
such as attention and working memory.’

Thus, the interaction between these various brain rhythms is
crucial for the integrative capacity of the brain, allowing for seam-
less coordination of distributed neural processes and forming the
basis of higher-order cognitive functions.'”'' It should be noted
that both within-frequency synchronization and cross-frequency
coupling are crucial mechanisms for coordinating neuronal pro-
cessing, enabling complex brain functions. To understand these
processes from an integrative perspective, contemporary neuro-
science increasingly utilizes complex network theory,'” which offers
a powerful set of graph-theoretical tools for characterizing brain
activity, both during task performance and in the resting state."”
In this context, a multilayer network model provides a particularly
suitable construct for representing neuronal communication.'®"
Within such a model, each layer corresponds to a network of neu-
rons synchronized within a specific frequency band, while multiplex
connections between these layers represent the influence of CFC.
This approach allows for the analysis of both the modularity of
neural activity within specific frequency bands and the interactions
between these modules at different frequencies, thereby provid-
ing a more comprehensive understanding of the brain’s functional
organization and dynamic behavior.'” By considering the brain as
a multilayer network, researchers can investigate how information
is processed and integrated across multiple spatial and temporal
scales, ultimately contributing to a more complete picture of brain
function. Understanding these complex within- and cross-frequency
interactions is essential for unraveling the mechanisms of neural
computation and for gaining insights into the pathophysiology of
neurological disorders."”

A. RQA-based multilayer network representation

The construction of edges within a functional multilayer graph,
derived from multichannel M/EEG data, typically involves quan-
tifying synchronization between signals. This synchronization is
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a fundamental mechanism for establishing functional connections
between neuronal ensembles. Various measures of phase synchro-
nization are commonly employed to assess functional connectivity.
However, recent work by Frolov et al.”’ has demonstrated the effec-
tiveness of recurrence quantification analysis (RQA) in assessing
both within- and cross-frequency synchronization. RQA is a ver-
satile method for analyzing nonlinear time series, which estimates
the likelihood of a system revisiting its previous states, i.e., recur-
rence. Frolov et al.”’ demonstrated the potential of RQA measures
for detecting CFC, offering an alternative approach to traditional
phase-based measures.

However, the cited work® focuses primarily on local CFC
defined as multiplexed communication between frequency bands
within signals from a single sensor (representing a single brain
region). Functional connectivity, as a concept, entails the identi-
fication of synchronization patterns between distant brain regions
that may or may not have direct anatomical connections.'>*' There-
fore, to comprehensively understand inter-regional brain dynamics,
it is essential to consider not only CFC within a single region (e.g.,
between theta and beta bands within the frontal or occipital lobe
separately), but also CFC between different regions (e.g., coupling
between the theta activity in the frontal cortex and the beta activity
in the occipital cortex).

Let us illustrate this approach and the ways of its further
modification and development. Figure 1 shows an illustrative exam-
ple showing the plan of building a network model taking into
account cross-frequency connections between different areas. Let
us consider signals from three brain regions, frontal (F), parietal
(P), and occipital (O) regions, which we will consider in two fre-
quency ranges, theta and beta bands, for certainty, as shown in
Fig. 1(a).

Analyzing the connectivity between brain activity signals from
different frequency bands and brain regions revealed a set of con-
nections, which is shown in Fig. 1(b). There is an illustration of
the resulting multilayer network, where the planes correspond to
two frequency bands (theta and beta bands). Accordingly, the lines
belonging to the planes characterize the edges within a frequency
band. Illustrations of the corresponding adjacency matrices for
edges within theta—theta and beta—beta bands, which are symmet-
ric matrices, are shown in Fig. 1(c). The lines that connect nodes
on different planes correspond to CFC edges. As can be seen from
Fig. 1(c), the CFC analysis results in fundamentally asymmetric
adjacency matrices between frequency bands.

To illustrate, consider the example of theta and beta band cou-
pling between frontal and occipital regions. The adjacency matrix
would not be symmetric: the strength of coupling between the theta
band in the occipital cortex and the beta band in the frontal cortex
would be distinct from the coupling between the beta band in the
occipital cortex and the theta band in the frontal cortex. This asym-
metry highlights the directionality and potentially the causal nature
of interactions between different frequency bands across different
brain regions.

When constructing a multilayer network from multichannel
M/EEG data, a single brain region (or a set of M/EEG sensors)
is represented by multiple nodes, each corresponding to a spe-
cific frequency band.”” This raises the question of how to inter-
pret these nodes, which, from a neurophysiological perspective,
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FIG.1. Example of the research pipeline applied to individual EEG sensors. (a) EEG time series (in this example, recorded by F4, P4, and O2 sensors) are filtered in the 6-band
(top panel) and B-band (middle panel). The bottom panel shows the sensor locations on the human head. (b) A recurrence-based dependency index is computed for each
sensor pair in both frequency ranges, forming a two-layer multilayer network. Each layer contains within-frequency connections (9—6 and 88 links), while cross-frequency
couplings (68 links) are represented by cross-layer edges. (c) Adjacency matrix of the multiplex network, with cell colors corresponding to edge colors in the network.
(d) Multigraph representation of the multilayer network, where within- and cross-layer connections are depicted as distinct edge types, alongside the corresponding incidence
matrix. (e) Proposed hypergraph representation of the multiplex network, achieved by transposing the incidence matrix, converting nodes to hyperedges and edges to nodes.
All representations are color-coded, e.g., -6 connections are shown in green in the multiplex network, in the adjacency matrix, in the multigraph representation, and as the

corresponding node in the hypergraph.

represent the same brain region but are functionally distinct in
the network depending on their involvement in within- and cross-
frequency interactions [see Figs. 1(b) and 1(c)]. In this framework,
each node associated with a brain region, along with its connec-
tions, captures the diverse functional roles of that region within
the broader network, reflecting its participation in both within- and
cross-frequency dynamics.

To avoid duplicating nodes, it would be advantageous to
develop a mathematical formalism that maps each brain region to

a single object in the functional brain network, while allowing for
multiple types of connections between nodes. This can be achieved
using a multigraph G, where pairs of nodes can be connected by
multiple edges [see Fig. 1(d)]. However, this approach introduces
the challenge of analyzing multiple connections between node pairs,
requiring the development of methods to evaluate and diagnose
multigraph measures. Such measures could be critical for classifying
brain states or distinguishing patient groups based on the properties
of their functional brain networks.
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B. Hypergraph representation of a multilayer network

In the analysis of multiplex networks, the traditional approach
involves embedding edges into distinct layers based on their type.'**
However, hypergraphs offer a more efficient representation of
complex higher-order interactions compared to traditional pair-
wise networks,”~* particularly for group interactions. A widely
used method is hypergraph projection, which maps a graph to a
hypergraph by preserving the node set and converting cliques into
hyperedges.”-”* The primary objective of this process is to main-
tain the structural integrity of the original graph. Nevertheless, this
approach has limitations, including the potential loss of information
about the original connectivity when using clique-based mappings.*

Our approach is as follows. We treat the edges of the multi-
graph G [see Fig. 1(d)] as vertices of a new graph, where the number
of vertices equals the number of edges in G. These new vertices
(representing the edges of G) are connected through the original
vertices of G. Mathematically, this is equivalent to transposing the
incidence matrix of G. For example, all edges of the multigraph G
originating from vertex “1” are connected through this vertex, and
in the new graph, the corresponding vertices (representing these
edges) are linked by an edge associated with vertex “1.” This con-
struction inherently forms a hyperedge spanning multiple vertices,
resulting in a hypergraph H. Here, the number of vertices in H
equals the number of edges in the multilayer network, and the num-
ber of hyperedges corresponds to the number of brain regions used
to reconstruct the functional brain network.

A toy illustration of our approach is shown in Figs. 1(d)
and 1(e). Since the adjacency matrix of the multiplex network
[Fig. 1(c)] does not adequately capture its multiplex structure, we
instead use the incidence matrix A of the multigraph G [Fig. 1(d)].
This matrix represents three nodes (O, P, and F) connected by nine
edges of different types. To move beyond the multigraph struc-
ture while preserving higher-order interactions, we construct a dual
hypergraph H to the original multiplex graph G, treating G as a
two-uniform hypergraph (where hyperedges connect exactly two
vertices). This is achieved by transposing the incidence matrix Ag,
converting edges of G into vertices of H and vertices of G into hyper-
edges of H [Fig. 1(e)]. Hence, each hyperedge ey linking a set of
vertices V(ey) € V means that in the original graph G, a vertex v,
had a corresponding set of incident edges Ey,,;. As the hypergraph
H is derived from a pairwise interaction network, its vertices have
a maximal degree of 2. The described procedure is fully reversible:
the original multiplex structure can be recovered by transposing the
hypergraph incidence matrix Ay back to its initial form.

This hypergraph construction resolves the issue of multiple
representations of the same region in the adjacency matrix [Fig. 1(c)]
and eliminates duplicate edges between nodes in the multigraph
[Fig. 1(d)]. By applying topological measures to the hypergraph, we
can derive a feature vector for classifying brain states.

C. Application to autism spectrum disorders

The application of advanced analytical methodologies to study
functional brain networks in children with ASD lies at the intersec-
tion of complex network theory, computational neuroscience, and
clinical medicine. In this study, we apply the introduce approach
to analyze higher-order interactions in functional brain networks
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derived from resting-state EEG data collected from typically devel-
oping children and children diagnosed with autism. This research
addresses the urgent need for early and objective diagnostic tools for
ASD, a neurodevelopmental condition characterized by social com-
munication deficits, restricted interests, and repetitive behaviors.”

From a biomedical perspective, this task is critically impor-
tant. Disrupted functional connectivity—defined as the temporal
correlation between spatially remote brain regions—has been con-
sistently identified as a hallmark of ASD.”"~** These disruptions are
thought to underlie the heterogeneous clinical manifestations of
ASD, making the development of robust methods for analyzing and
diagnosing functional brain networks in children with ASD both
a mathematical challenge and a medical necessity. Early diagnosis
and intervention are essential for improving long-term outcomes,
and the identification of reliable biomarkers through advanced net-
work analysis could significantly enhance diagnostic accuracy and
therapeutic targeting.

This study has three primary objectives. First, we apply a
RQA-based approach to construct edges of a multilayer graph from
multichannel EEG data, capturing both within-frequency and cross-
frequency connectivity to comprehensively represent the brain’s
functional architecture. Second, we investigate the potential of a
hypergraph construction procedure based on a multilayer network
model to uncover hidden patterns and features in complex networks
that traditional graph-theoretical methods may miss. By leveraging
higher-order interactions in hypergraphs, we aim to reveal novel
insights into the organizational principles of functional brain net-
works in ASD. Third, we aim to distinguish autism-specific func-
tional hypergraph patterns from those associated with neurotypical
development using hypergraph classification techniques applied to
resting-state EEG data. Identifying unique topological features of
functional hypergraphs in children with ASD could contribute to
a diagnostic framework capable of differentiating ASD from typical
development with high sensitivity and specificity.

Il. METHODS

The pipeline of the research is presented in Fig. 2. In this
section, we describe the main steps and methods in detail.

A. Dataset

The dataset comprised resting-state EEG signals from 533 sub-
jects divided into two groups: 282 typically developing children (TD
group, 7.2 & 3 years) and 251 children with autism spectrum disor-
der (ASD group, 6.7 = 3.2 years). Detailed inclusion/exclusion crite-
ria (including ADOS-2, CARS, and non-verbal Wechsler scores) are
available in the supplementary material.

EEG recordings were acquired using a 19-electrode setup
arranged according to the 10-20 international system,” with elec-
trodes on the left and right mastoids serving as the reference for a
unipolar montage. Subjects were seated comfortably, instructed to
remain still with their eyes open, and monitored by their parents
to ensure cooperation. Each recording lasted approximately 5 min,
sampled at 250 Hz.

Prior to analysis, the data underwent artifact removal using
independent component analysis and a 1-125Hz band-pass filter.
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FIG. 2. Research pipeline overview: (1) Experimental dataset of eyes-open resting-state EEG signals from two subject groups, (2) preprocessing and frequency analysis
using continuous wavelet transform with statistical testing, (3) reconstruction of multilayer functional connectivity networks via RQA-based methodology, (4) transformation
from a three-layer multiplex network to hypergraph representation, and (5) a between-group statistical comparison of multiplex and hypergraph network features and SYM

classification using feature vectors from both representations.

Due to challenges in obtaining EEG recordings from autistic
children, recording durations varied, with the shortest being 10s. As
recurrence quantification analysis is well-suited for short time series,
a random 2-s segment was extracted from each subject’s recording
for further analysis.

B. Ethical statement

This study was conducted in accordance with the principles
of the Declaration of Helsinki. The research methodology was
approved by the ethics committee of the Institute of Higher Nervous
Activity and Neurophysiology of the Russian Academy of Sciences
(protocol No. 2 of April 30, 2020). The parents of all children signed
informed consent to participate in this study. Children gave verbal
consent to participate.

C. Time-frequency analysis

To analyze between-subject differences in brain activity, we
computed power spectra for each EEG time series (1-40 Hz) using
continuous wavelet transform with a Morlet mother wavelet.”
This identified frequency ranges of interest (FOIs) showing signif-
icant differences between ASD and TD groups. A spatial-frequency
permutation cluster-based F-test™ revealed two significant clus-
ters: slow-frequency (1-10Hz, p = 0.001) and mid-8 (16-19 Hz,
p = 0.006), both exhibiting increased spectral power in ASD chil-
dren (see Fig. S1 in the supplementary material).

We determined group-averaged peak alpha frequency (PAF) as
the maximum magnitude within the alpha band,” finding 8 Hz for

TD and 7Hz for ASD groups. This aligns with established devel-
opmental trends where PAF increases from ~6 Hz in infancy to
~10Hz in adolescence,’” and with reported PAF reductions in
ASD children.***

Based on these results, we defined three FOIs:

o 0 range (2-6 Hz);
« slow a range (6-10 Hz), adjusted for age and PAF differences; and
 mid-g range (16-19 Hz).

This selection captures both the identified spectral differences and
known developmental characteristics of the groups.

D. Recurrence-based multilayer connectivity

In this study, we estimated sensor-level functional connectiv-
ity using a measure based on joint recurrence plots (JRPs) intro-
duced in Ref. 42. Building on our previous methodology applied to
EEG data,” we constructed frequency-specific multilayer functional
networks based on the previously identified FOIs. The complete
implementation pipeline of this approach is shown in Fig. 3.

1. Multivariate embedding

Recurrence plots (RPs) are used to analyze recurrences in m-
dimensional phase space trajectories of dynamical systems using a
two-dimensional visual representation in a form of squared binary
matrix R,

R, =0 — lIx — x5 €eRij=1,...,N, (1)
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FIG. 3. RQA-based functional connectivity estimation: (a) Sensor layout with highlighted triads (gray) used within the multivariate approach, showing exemplary time series
from right frontal (F,) and occipito-temporal (OT;) regions. (b) Corresponding 3D state space trajectories and their joint recurrence plot.

where N is the number of states x; (or length of considered time
series), ¢ is a threshold that determines the size of the neighborhood
centered at x;, || - || is the norm, and @ is the Heaviside function.

RPs can be estimated from the time series. The convenient
approach of RP calculation is to reconstruct the features of the phase
space using an embedding dimension and delay.*~* In the present
research, however, we employ a multivariate approach rather than
Takens’” embedding for several reasons. First, using EEG time series
to reconstruct a phase space trajectory is problematic since the
recorded EEG signal may not robustly represent an underlying
dynamical system, which means that the reconstructed phase space
portrait is critically dependent on the observed process.” Second,
when working with sensor-level EEG-based connectivity, one must
consider the field spread problem,'" which significantly alters the
results of functional connectivity network restoration. Therefore, we
group 19 EEG sensors (excluding the Fz sensor) into 3D subsets
based on six regions of interest [ROIs, see Fig. 3(a)]:

Frontal left (F)): Fpl, F7, F3;

Frontal right (F,): Fp2, F8, F4;

Central (C): C3, Cz, C4;

Parietal (P): P3, Pz, P4;

Occipito-temporal left (OT)): T3, T5, O1; and
Occipito-temporal right (OT,): T4, T6, O2.

SR e

Therefore, each brain ROI is represented by a 3D state space
trajectory [see Fig. 3(b)]. The same multivariate approach was pre-
viously used in Ref. 48 and was shown to effectively represent
RQA-based effects on EEG signals related to motor execution.

2. JRP-based synchronization measure

Joint recurrence plots (JRPs) quantify similarities between two
processes x(f) and y(t) through their recurrence structures.” The
JRP matrix is computed via element-wise multiplication of individ-
ual recurrence matrices from Eq. (1). For each process, the different

thresholds ¢ should be considered, but in the case with JRP cal-
culation, using a fixed number of nearest neighbors Ny is more
appropriate.”” We fix Ny/N at the same value for both consid-
ered processes (RR = Ny/N) and calculate joint recurrence rate as
follows:

N N

1
JRR= 3 ) IRy, 2)

i=1 j=1
where

xRy
JR = R R;; (3)
is a corresponding joint recurrence matrix. Hence, we can calculate
the recurrence-based index of synchronization,

S = IR—R (4)
RR
The value of $¥ indicates the level of similarity between
two recurrence matrices and, therefore, the presence of a func-
tional relationship between two processes x(¢) and y(f). ¥ takes
values between 0 (independent processes) and 1 (generalized
synchronization, GS).

E. Cross-frequency coupling and a multilayer network

We construct a multilayer network with nodes representing the
six ROIs [Fig. 3(a)] characterized by 3D EEG signals in three defined
FOIs. The recurrence-based synchronization index (4) yields:

o Three symmetric within-frequency adjacency matrices (6 x 6):
WO We=* and WP~# with zeros on main diagonals (no self-
loops).

« Three non-symmetric cross-frequency matrices: W%, W?=#,
and We 8,
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FIG. 4. Multilayer network analysis: (a) Adjacency matrix of the three-layer multiplex network, with within-frequency connections (diagonal blocks) and cross-frequency
couplings (lower triangle). (b) Results of between-group network-based statistics showing significantly stronger connections in the ASD (left) and TD (right) groups

(tcrilical = 305’ Peritical = 0001)

The super-adjacency matrix for a multilayer graph G of size
(18 x 18) is defined as the block matrix,

wo-? 0 0
SG — W9—oz We—« 0 , (5)
WO woeb Wh-F

where diagonal blocks encode intra-layer within-frequency connec-
tivity and off-diagonal blocks represent CFCs [Fig. 4(a), lower half
shown due to symmetry].

Network-based statistics® (NBS; ¢.iticat = 3.05, Peritical = 0.001)
reveal distinct connectivity patterns [Fig. 4(b)]:

o TD group: Stronger overall connectivity compared to the ASD
group.

o ASD group: Dominant within-frequency connections (right
frontal/occipito-temporal to central/parietal) and stronger CFC
between the bilateral frontal cortex in the 6-layer and almost all
other areas in « — and S —layers compared to the TD group.

These findings align with the conflicting literature on ASD
connectivity, where both hyper- and hypo-connectivities have been
reported,””* suggesting limitations of functional connectivity as a
standalone biomarker.”

F. Classification

To demonstrate the advantages of a hypergraph representa-
tion over conventional multiplex networks, we implemented a sup-
port vector machine (SVM) classifier using node degree features
extracted from both representations.

The classification pipeline incorporated rigorous validation
measures to prevent overfitting:

1. Hyperparameter tuning through grid search, which has been
empirically validated for improving classification performance
while controlling overfitting.”—*°

2. Model evaluation using a tenfold cross-validation technique.”

The optimal hyperparameters identified through the grid
search were:

 Regularization parameter C =1 for a multiplex network and
C = 10 for a hypergraph.

o Kernel coefficient y = 0.005 for a multiplex network and
y = 0.01 for a hypergraph.

« RBF kernel for both models.

Among all hyperparameters, the regularization parameter
C and kernel parameter y have the greatest impact on SVM
performance.”® In particular, y affects the sample data mapping,
and C controls the “compromise” between the maximization of the
margin and minimization of the training error.”

Feature vectors consisted of:

« 18-dimensional degree vectors for multiplex networks (6 nodes
x 3 layers).

« 153-dimensional degree vectors for hypergraphs (comprising
15 within-frequency hypergraph nodes per layer and 36 cross-
frequency nodes between each layer pair).

1ll. RESULTS AND DISCUSSION
A. Hypergraph construction

To analyze the RQA-based adjacency matrices, we applied
a series of thresholds to systematically prune the weakest con-
nections, retaining only edges above specified quantiles g = [0.4,
0.5,0.6,0.7,0.8,0.9,0.95,0.975] of the initial edge weight distribu-
tion. Each weighted connection S; in the super-adjacency matrix
[Eq. (5)] was binarized according to

0,
a,j = 1

Following this thresholding procedure, we derived for each
participant the incidence matrix A¢ of the thresholded multilayer
network and its corresponding hypergraph incidence matrix Ay

Sij < g

Sij > q. ©
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FIG. 5. Consensus hypergraphs for ASD and TD groups at threshold g = 0.5, where closed colored contours represent hyperedges. Nodes present in only one group
are highlighted in bold. Each node’s name corresponds to its original connection in the multilayer network prior to hypergraph conversion—for example, node OTI, — OTlg
represents the edge connecting the OT] region between «- and B-layers in the initial multilayer network. Node colors indicate their membership in specific hyperedges.

obtained through matrix transposition,
Ay =AL 7)

Each resulting hypergraph contained E = 6 hyperedges correspond-
ing precisely to the ROIs defined in Sec. 11 D 1.

To visualize group-level patterns, we generated consensus
hypergraphs for both ASD and TD groups,” retaining only nodes
that are present in at least 50% of subjects in each group. The pro-
cedure involves averaging the binarized connections in the incident
matrix Ay over all subjects in the group,

L
¥ _ n
@G =5 E ag, (8)
n=1

where 7 is the subject number and N is the number of subjects in
the group. Finally, to construct consensus incidence matrix Ay, we
binarize the resulting connection strengths as follows:

. 0, af<0.5,
“"1:{1 g > 05 ©)
. a;>05.

This consensus approach, which has demonstrated particu-
lar utility in studying the topology of fMRI-based functional brain
networks,”~*' revealed striking between-group differences (Fig. 5).
The ASD group exhibited robust preservation of within-frequency
connectivity in bilateral frontal regions across all frequency bands
(B—B, a —a, and 6 —6) and relatively sparse cross-frequency
coupling outside frontal areas. In contrast, the TD group showed
more distributed patterns of cross-frequency coupling, promi-
nent CFC involving central and occipito-temporal regions, and
greater overall integration across frequency bands. These findings
highlight how the hypergraph representation captures organiza-
tional principles that may be obscured in conventional multilayer

network analyses, particularly the distinct balance between within-
frequency and cross-frequency interactions in neurotypical vs ASD
populations.

B. Statistical analysis of a multilayer network and
hypergraph measures

We chose node degrees to compare the ability of both multi-
plex and hypergraph representations to identify differences between
functional connectivity of ASD and TD groups of subjects. With-
out applying threshold, each multilayer network of brain functional
connectivity was fully connected with total 153 edges (15 edges in
each within-frequency layer and 36 x 3 cross-frequency couplings
between layers), with a value of S indicating the strength of synchro-
nization between nodes. The thresholding procedure removed the
less important edges and opened the possibility to highlight the dif-
ferences between ASD and TD groups by analyzing the features of
corresponding network structures. Before proceeding with the t-test,
the normality assumptions were verified for both datasets (hyper-
graph and multiplex networks). Additionally, the corresponding
p-values were adjusted to account for multiple hypothesis testing
using the Benjamini-Hochberg test.”” Figure 6 shows the result of
the t-test for independent samples for both hypergraph and multi-
plex network node degrees for g = 0.9. P-values for each quantile
are presented in Tables S1 and S2 of the supplementary material.

Our analysis revealed that the hypergraph representation pro-
vided superior discriminative capability compared to the conven-
tional multiplex network approach. Specifically, while connection-
type-averaged degrees failed to show any significant between-group
differences in the multiplex networks regardless of threshold selec-
tion, the hypergraph representation successfully identified statisti-
cally significant divergence in nodes that predominantly involved
0-o connectivity patterns. This finding underscores the enhanced
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FIG. 6. Statistical comparison of network measures at threshold q = 0.9.
(a) Group-averaged node degrees stratified by connection type (within-frequency
and cross-frequency couplings for all bands), shown for both hypergraph (left)
and multiplex network (right) representations. (b) Local node degree distributions
(mean <+ SD) in the hypergraph representation, where asterisks (*) mark nodes
showing statistically significant between-group differences.

sensitivity of hypergraph-based measures for detecting neurophys-
iologically relevant differences in functional network organization
between ASD and TD populations.

C. Classification

The statistically significant between-group differences revealed
by our analysis suggest promising avenues for improving ASD clas-
sification performance. Current clinical practice relies heavily on
behavioral observations and parental questionnaires, which while
effective for diagnosis by age 2°° could benefit from complementary
quantitative biomarkers. The importance of such objective mea-
sures is underscored by research showing that early intervention
outcomes correlate positively with treatment efficacy,” highlighting
the need for reliable auxiliary diagnostic tools.”

The classification performance, as shown in Fig. 7, reveals a
clear superiority of hypergraph-derived features. While the achieved
metrics (F1-score: 81%, AUC: 0.81) may not represent the absolute
state-of-the-art in ASD classification, they demonstrate clinically
meaningful potential. These results suggest that the method could
serve as a valuable supplementary tool for diagnostic confirma-
tion, treatment monitoring, and research into ASD connectivity
patterns. The ROC curves in Fig. 7 provide visual confirmation
of the hypergraph’s discriminative power, with multiplex network
features showing minimal ability to distinguish between diagnos-
tic groups. This pronounced performance difference underscores
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FIG. 7. Receiver operating characteristic (ROC) analysis of SVM classifiers
trained on different network representations. The left panel shows performance
using multiplex network features, while the right panel displays results for hyper-
graph-derived features. Plots show the mean ROC curve with standard devia-
tion bands across all k-fold cross-validation iterations, with the corresponding
area under the curve (AUC) scores indicating overall classification performance.
The shaded regions represent the 1 standard deviation of the ROC curves
across validation folds.

the critical importance of a network representation choice when
analyzing functional connectivity in neurodevelopmental disorders.

There is a vast amount of research dedicated to ML-based iden-
tification of ASD children based on the brain functional connectivity
measures, many of which present an impressive performance of clas-
sifiers. Considering the pairwise interactions, in Ref. 66, the authors
demonstrated 95.8% accuracy, 100% sensitivity, and 92% specificity
via SVM. The authors of this paper calculated the brain connectiv-
ity network in the several frequency bands and, unlike this article,
considered them separately from each other. The authors of Ref. 67
employed discrete wavelet transform and correlation-based feature
selection to achieve accuracy of 93% via random forest. Another

68

SVM study®” achieved 85.4% accuracy via SVM trained on relative
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power indices calculated using FFT on EEG data. Impressive 99.15%
accuracy was achieved by applying short-term Fourier Transform to
get 4657 spectral images based on EEG and a trained CNN-based
classifier.”

While pairwise interaction studies are mostly focused on the
efficiency of classification, the research on higher-order interactions
is more interpretation-oriented and has an emphasis on the abil-
ity of hypergraph construction methods to reveal novel differences
in higher-order network structures between normal and patholog-
ical brain networks. However, there is a rather limited amount of
ASD research dedicated to higher-order interactions, including ML-
based classification. In Ref. 70, the authors proposed a method based
on hypergraph convolution and gated attention with a maximum
AUC of 77.03. Another contrastive learning method described in
Ref. 71 reached AUC = 64.8. In Ref. 72, the authors proposed an
approach for hypergraph construction from fMRI time series that
achieves a classification accuracy of 80.31%. Outside of ASD detec-
tion and identification, hypergraph-based approaches are being
actively applied to reveal various cognitive processes in the brain
that may be omitted in the pairwise approach.”

In the present study, an AUC of 81 was achieved using an
SVM-based classifier trained on hypergraph measures. Our results
demonstrate that converting multiplex networks to hypergraph
representations yields substantial advantages for machine learning
applications. The hypergraph transformation not only increases fea-
ture dimensionality from 18 to 153 features but, more importantly,
captures statistically significant between-group differences that are
absent in the multiplex representation. We evaluated these advan-
tages by training SVM classifiers using local node degree features
from both network types.

D. Enhanced stability of connectivity patterns in a
hypergraph representation

The hypergraph approach demonstrates fundamentally greater
stability in capturing group-level connectivity patterns compared to
traditional multilayer network representations This critical advan-
tage emerges from intrinsic differences in how topological infor-
mation is structured across the two frameworks. To illustrate this
phenomenon, consider a characteristic ASD connectivity pattern,
shown for simplicity as a triangle ABC within a multilayer network,
where A, B, and C represent specific nodes. In conventional mul-
tiplex network analysis, each node of this pattern would exhibit a
nominal degree of 2, yet display substantial intersubject variability
with potential degree values spanning from 0 to 17 (due to the pres-
ence of 3 frequency layers and 6 regional nodes per layer). This pro-
nounced variability stems from two primary sources: the stochastic
inclusion of extraneous connections beyond the core pattern and
the intermittent absence of essential pattern-defining connections
in individual subjects.

The transformation to hypergraph representation induces a
paradigm shift in pattern stability. Each connection within the
original pattern transitions into an autonomous node with deter-
ministic degree properties—specifically degree 2 for connections
between different brain regions and degree 1 for cross-frequency
couplings between representations of the same region in differ-
ent frequency layers. This transformation yields three fundamental
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stabilizing characteristics. First, the core connectivity pattern main-
tains structural invariance regardless of additional random connec-
tions that may appear in individual subjects. Second, the represen-
tation demonstrates inherent noise resistance, as extraneous con-
nections external to the pattern leave the degrees of pattern nodes
unaffected. Third, and most consequentially, the metric dispersion
shows marked reduction across subjects for hypergraph-derived
measures compared to multiplex network metrics.

These theoretical advantages manifest concretely in our empir-
ical results, accounting for both the enhanced statistical significance
and superior classification accuracy observed with hypergraph-
derived features. The framework’s capacity to isolate essential con-
nectivity patterns from incidental variations explains its robust
performance. Where multiplex networks conflate meaningful con-
nectivity with random variations, hypergraphs effectively decouple
these components, preserving a clean pattern representation despite
biological variability. This property proves particularly valuable in
clinical applications where distinguishing consistent neurophysi-
ological signatures from individual variations is paramount. Our
quantitative comparisons reveal substantially tighter clustering of
hypergraph features across subjects, directly translating to more
reliable group discrimination and clinical classification potential.

IV. CONCLUSION

In this study, we propose an approach for distinguishing
ASD using advanced methods of functional connectivity analysis
applied to neurophysiological EEG data. Our research prioritized
detectability over interpretability, aiming to uncover functional con-
nectivity features that could enhance the robustness of diagnostic
classifiers. The key innovation of our work lies in the transition
from a frequency-based functional connectivity multilayer network
to a hypergraph representation. This transformation is lossless,
reversible, and significantly improves classification performance,
offering a new perspective on the analysis of complex brain net-
works.

First, we demonstrated that representing brain networks as
hypergraphs, rather than traditional multilayer networks, allows for
the detection of higher-order interactions that are not captured
by conventional graph-theoretical methods. This approach revealed
unique topological features in the functional brain networks of chil-
dren with ASD, which were not apparent in the multilayer network
representation. Second, the hypergraph-based features provided sta-
tistically significant differences between ASD and TD groups, lead-
ing to a considerable improvement in classification performance.
Using an SVM classifier, we achieved an Fl-score of 81% with
hypergraph features, compared to only 57% with multilayer network
features. This suggests that hypergraph measures are more stable
and informative for distinguishing ASD from TD. Third, our analy-
sis revealed distinct patterns of functional connectivity in children
with ASD, particularly in bilateral frontal regions within specific
frequency bands. These findings align with previous studies that
have reported both increased and decreased connectivity in ASD,
highlighting the complexity of neural connectivity in this disorder.

Future work will focus on improving the interpretability of
hypergraph measures by exploring their topological properties in
greater detail, potentially through the development of new metrics
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or visualization techniques that bridge the gap between complex
network theory and clinical neuroscience. We also plan to expand
our analysis to larger and more diverse datasets, including longi-
tudinal studies, to validate the robustness of our approach across
different populations and developmental stages. This expansion will
enable us to explore potential subtypes of ASD and their unique con-
nectivity profiles, providing a more nuanced understanding of the
disorder. Additionally, integrating EEG data with other neuroimag-
ing modalities, such as fMRI or structural MRI, could offer a more
comprehensive understanding of the neural mechanisms underly-
ing ASD. This multimodal approach may enhance the accuracy and
interpretability of diagnostic classifiers, further refining our ability
to detect and monitor ASD.

In conclusion, our study represents a step forward in the appli-
cation of advanced network analysis techniques to the study of
ASD. By leveraging hypergraph representations, we have uncov-
ered new insights into the functional connectivity patterns asso-
ciated with ASD. While challenges remain, particularly in terms
of interpretability and generalizability, our findings highlight the
potential of hypergraph-based approaches to transform the field of
neurodevelopmental disorder research.

SUPPLEMENTARY MATERIAL

See the supplementary material that provides additional details
supporting the main research paper. It includes:

o Inclusion/exclusion criteria: Clear guidelines for participant
selection, ensuring rigorous group comparisons (ASD vs typically
developing children).

Figure S1: Statistical results from EEG frequency analysis, high-
lighting significant differences in brain activity (1-10Hz and
16-19 Hz ranges) between groups.

Tables S1 and S2: Statistical comparisons of brain network con-
nectivity (node degrees) across different thresholds, contrasting
multiplex network and hypergraph representations.
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