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Abstract

This review examines the role of industrial data in enabling artificial intelligence (AI)
technologies within the framework of Industry 4.0. Key aspects of industrial data man-
agement, including collection, preprocessing, integration, and utilization for training Al
models, are analyzed and systematically categorized. Criteria for assessing data quality are
defined, covering accuracy, completeness, consistency, and confidentiality, and practical
recommendations are proposed for preparing data for effective machine learning and deep
learning applications. In addition, current approaches to data management are compared,
and methods for evaluating and improving data quality are outlined. Particular attention
is given to challenges and limitations in industrial contexts, as well as the prospects for
leveraging high-quality data to enhance Al-driven smart manufacturing.

Keywords: big data management; digital twins; prediction and prevention; Al applications;
machine learning

1. Introduction

Modern industry is undergoing a profound transformation driven by the introduction
of artificial intelligence (AI) technologies and the digitalization of production processes as
part of the Industry 4.0 (I4.0) vision. 14.0, or the fourth industrial revolution, involves the
integration of cyber-physical systems, the Internet of Things (IoT) and smart technologies
to create ‘smart manufacturing’ capable of self-optimization and autonomous decision-
making [1]. In this context, industrial big data becomes a key resource, and its efficient use
becomes the basis for the implementation of Al solutions aimed at increasing productivity,
reducing costs, and improving product quality [2].

The shift toward a new production paradigm is driven by increasing global competi-
tion and the rise of intelligent industries, compelling the industrial sector to actively adopt
innovative solutions [3]. I4.0, implemented in recent years, represents a radical transfor-
mation of manufacturing processes, encompassing the development of ‘smart factories’
and interconnected industrial environments. These systems are founded on key principles
such as interoperability, virtualization, decentralization, distributed control, real-time op-
eration, service orientation, modularity, and reduced operational costs [4]. Despite these
advancements, traditional centralized control architectures and direct point-to-point device
connections are increasingly inadequate for meeting the demands of modern industrial
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applications [5]. Consequently, the full realization of the 14.0 vision is regarded as a long-
term goal, ultimately resulting in a complex ecosystem that integrates more than 30 distinct
technological domains [6].

A key element of 14.0 innovation is the concept of cyber-physical convergence, in-
cluding the creation of digital twins [7]. Industrial big data management plays a central
role in realizing this concept [8]. Technologically advanced devices such as robots, sensor
networks, virtual and augmented reality and GPS cameras are already having a significant
impact on shaping industrial ecosystems by linking the cyber and physical worlds [9]. Data
collected from the physical environment are transmitted to cyberspace for processing which
adapts applications and services to the physical context. The results are then returned to
the physical world through actuators and robotic systems. A digital twin, which is a virtual
model of a physical object, allows simulating its behavior and optimizing production
processes [10]. Virtual models analyze the state of physical objects using sensory data. They
predict potential changes and subsequently adapt the physical systems based on optimized
scenarios. Thus, the digital twin contributes to the creation of a closed cyber-physical
system where data management becomes a critical process that short-circuits all production
and technological chains [7]. The development of digital twin technologies is closely related
to machine learning (ML) methods and complex system theory [11-13] and is determined
by the completeness of data collection about the modelled process [14-16].

So, a key aspect of successful implementation of 14.0 technologies is the collection,
accumulation, systematization, partitioning, and access to industrial big data. Effective
data management is becoming critical to improving productivity, optimizing processes and
making informed decisions in production management. However, it should be noted that
industrial enterprises face a number of challenges when dealing with data in the context
of I4.0 [8]. These include (i) heterogeneity of data coming from different sources (sensors,
IoT devices, ERP systems), (ii) problems with their cleaning and integration, as well as
(iii) the need to ensure high accuracy and reliability of data to build effective Al models [17].
In addition, Al implementation requires taking into account knowledge from the subject
area, in this case the features of industrial processes, which makes this task even more
complex and multidisciplinary [18].

The aim of this review is to analyze the peculiarities of data used for implementing
Al solutions, to develop an approach to assessing the quality of industrial data and to
develop recommendations for their preparation and processing within the framework of
the I4.0 concept. This work addresses a gap in the literature by providing a comprehensive,
systematic framework that bridges the domains of data management, quality assessment,
and Al model readiness specifically for smart manufacturing. The practical significance of
the study lies in the possibility of applying the developed recommendations to improve
the efficiency of Al implementation in enterprises, which corresponds to the global trends
of digitalization and automation in industry.

2. The Role of Industrial Data in Smart Manufacturing Infrastructure

To meet the challenges of cyber-physical convergence under 14.0 and improve the
efficiency of digital twins, key technological factors are highlighted. New assembly lines
will accelerate the reconfiguration of automated systems, ensuring reliability and short
product lifecycles, which are critical to the competitiveness of enterprises [19]. Industrial
Internet of Things (IIoT) and cyber-physical systems are revolutionizing business processes,
covering the entire cycle—from production to interaction with customers and suppliers.
Unlike consumer IoT, IIoT involves the use of powerful devices with advanced data storage
and processing capabilities, requiring both local processing and information sharing [20].
The integration of industrial robots reduces costs and increases transparency by facilitating
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human-robot interaction, where robots have skills comparable to humans [21]. Wireless
sensor and actuator networks (WSANSs) provide remote monitoring and control, reducing
equipment failures and increasing productivity [22]. Networked control systems (NCSs)
eliminate the need for wired connections, simplifying design and reducing costs [23]. New
machine-to-machine (M2M) protocols with high data rates, minimal latency, and high
reliability are bringing the realization of 14.0 requirements closer [24]. These technologies
form the basis for the creation of intelligent production capable of adapting to dynamic
market conditions.

Industrial data enables cyber-physical convergence within 14.0 by enabling the cre-
ation of digital twins representing physical objects. The natural evolution of data-driven
industrial technologies and services leads to the creation of vast amounts of data of varying
size and importance. Data serve as a fundamental resource for advancing 14.0 from machine
automation to information automation and then to knowledge automation. In addition,
data enable fast control cycles for applications such as zero-defect manufacturing, allowing
information to be shared between production sites of a single plant operator or between
value chains made up of different stakeholders. Indeed, concepts such as shared ‘data
buses’ connecting factory environments have already been identified as the most important
enabler of new 14.0 paradigms; for example, the concept of International Data Spaces
Association, first introduced in [25]. Over the last few decades, large amounts of data have
been generated in industrial environments through the widespread use of NCSs. In the
beginning, these large amounts of data were rarely used for detailed analyses; instead, they
were only used for routine technical checks and process logging. Later, the realization of
the importance of extracting insights from the data took a leading role in 14.0 [26]. This is
due to the exponential growth in the number of data sources, both archival and real-time.
However, data alone are not useful and data processing processes, including data mining
techniques and Al technologies, are needed to utilize them effectively [26,27].

Figure 1 illustrates technologies that enable industrial data and digital services fo-
cused on data management and manipulation. Industrial data of varying volume, intensity,
and criticality are generated in these technology devices and distributed throughout the
industrial and manufacturing ecosystem. This categorization is in line with the general ar-
chitectural model of industrial automation, commonly known as the industrial automation
pyramid [28]. The automation pyramid is an architecture created in 1990 by the Interna-
tional Society of Automation ISA-95 standard [29], which formed the basis of the IEC 62264
standard [30]. It represents a standard for the integration of enterprise management systems
that proposes hierarchical levels from the industrial process itself to accounting and busi-
ness management systems. It has been designed to be applicable to a variety of industries
and processes, allowing all components involved in process automation to be represented.

The industrial automation pyramid is divided into five layers. Each layer is character-
ized by a set of networks and specific requirements (see Figure 1A). The pyramid implies
both hierarchical and horizontal relationships. Horizontally, components within the same
layer interact, while vertically they connect with subsystems directly above and below. At
the bottom of the pyramid are the layer of manufacturing processes and field networks
(sensors and actuators) (red), which typically consist of assembly lines, robots, IIoT devices,
sensors and actuators. At this ground layer, the main requirements for data transmission
are the real-time operation, low latency for data reception/transmission, and low jitter
for control applications. The next layer (green) is the control network, which typically
consists of controllers and connection servers. Higher levels are the supervision (violet)
and production control ones, which consist of operator workstations, engineering and
monitoring stations and servers, and much more advanced computation, communication
and storage capabilities than the previous levels. At the very top layer is the enterprise
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resource planning system (corporative management). In general, the upper layers of the
automation pyramid have more relaxed latency constraints and real-time properties than
the lower layers. The bottom two layers consist of the operational technology hardware
and protocols, which are the core critical infrastructure of the enterprise automation system.
All of the layers above consist of information technology hardware and protocols.
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Figure 1. The evolution from traditional industrial automation to the Industry 4.0 paradigm. (A) The
hierarchical automation pyramid of the Third Industrial Revolution. (B) A flexible, service-oriented
architecture for smart manufacturing. The color scheme indicates the functional correspondence
between the rigid layers in (A) and the modern, interconnected technologies in (B). The Industry 4.0
model (B) is characterized by bidirectional data flows: a bottom—up stream (‘Data-centric industrial
services’) channels data from physical assets (e.g., robots, production lines) through cyber-physical
systems (IIoT/ICPS) to enable Al and service applications, and a top—down stream (‘Data using
industrial technologies’) guides the development of new, data-driven functions (e.g., big data ana-
lytics, semantic ontologies). Horizontal ‘Energy Management’ and ‘Security Management” layers
are cross-cutting enablers, which ensure resource optimization and end-to-end protection across
the entire ecosystem. This transition from a rigid hierarchy to an interconnected network facilitates
real-time analytics, decentralized decision-making, and autonomous control (adapted from [28,31]).

Smarter industrial data management requires the implementation of digital services
across the control layer of the automation pyramid. These services span production
control, manufacturing execution, and enterprise resource planning (see Figure 1B). Big
data analytics, ML and semantic modeling, facilitate industrial integration and cyber-
physical convergence because typical data integration involves large amounts of data,
traffic, comparison, and transformation of different data formats [32]. These operations are
usually performed in local or global data cloud services that horizontally span industrial
installations. Decision-making, job scheduling, and human-in-the-loop approaches are
expected to compose hybrid command and control systems with dynamic structure and
distributed intelligence, capable of meeting industrial needs and rapid market changes [33].
Augmented reality (AR), virtual reality (VR) services, cameras, and machine vision systems
are expected to be able to collect data and mimic the human information processing system
to utilize intelligence capabilities and interpret the industrial environment. Prediction and
predictive processes, anomaly detection, and fault diagnosis are expected to not only collect
data but also support advanced analytics to extract useful insights with high return on
investment of such technologies in manufacturing processes and networks [34]. In addition,
a sustainable production process is not possible without intelligent energy management
and safety solutions, which form two end-to-end services that are present in all control
networks at different levels of the automation pyramid [35].
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Realizing the high-level control system in Figure 1B depends on two prerequisites:
the comprehensive collection and processing of digital industrial data and the training of
Al models for deployment across various services and pyramid levels. This foundation
enables business intelligence derived from automated data processing. Consequently, this
intelligence can be leveraged for production management throughout the entire automation
pyramid. This is illustrated in Figure 2, which schematically illustrates the main industrial
data flow that we further explore in this article. Let us look at industrial data flows in more
detail abd start our consideration with the main sources of industrial data, which should
be orientated on when building an intelligent 14.0 infrastructure.
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Figure 2. Schematic representation of the industrial data lifecycle in Industry 4.0. The left panel
illustrates the main sources of industrial data described in Section 3. The central panel depicts key
stages of data handling: primary processing (left), storage (center), and intelligent processing (right).
The right panel highlights potential business intelligence outcomes enabled by machine learning
and deep learning techniques applied to collected industrial data. Notably, historical process data
can be accumulated (grey arrow) and leveraged to continuously refine AI models. This lifecycle
underscores that raw data must undergo critical preparation stages (cleaning, integration) before
fueling Al models. The closed feedback loop, where historical data refines future models, is essential
for creating adaptive and self-improving production systems.

3. Data Sources in Industry

The implementation of Al solutions at industrial enterprises is impossible without
the use of data that come from various sources (see Figure 2). These data reflect the
state of equipment, parameters of production processes, as well as management and
logistics information.

3.1. Sensors and IIoT Devices

Sensors and IloT devices are key sources of data in industry. They collect information
about equipment status, temperature, pressure, vibration, humidity, and other parameters
in real time [2]. These data allow monitoring the current state of production processes,
predicting possible failures and optimizing equipment performance.
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The main features of data from sensors and IoT devices that affect the quality of
industrial data are as follows:

e  The sampling update rate of the data can be very high (fs > 1 Hz), generating large
amounts of information [36].

e  Collected data can be both numerical (temperature, pressure) and categorical (equip-
ment status), which fundamentally requires multimodal data processing [37].

e  Errors and omissions may occur due to equipment or data transmission failures, which
requires data preprocessing, error correction, and gap filling [17].

These features also give rise to the main challenges of utilizing industrial data from IoT
sensors. First, the processing of large-scale data in real time requires cloud storage solutions
capable of handling massive datasets and supporting efficient partitioning for training
intelligent control systems. Second, ensuring the reliability and accuracy of industrial data
remains a critical and urgent issue.

The predictive maintenance capabilities of IloT and Al are demonstrated by several
industrial case studies. Siemens, for instance, employs sensors to monitor gas turbine
conditions, analyzing vibration, temperature, and pressure data with machine learning.
This approach has reduced maintenance costs by 30% and increased equipment uptime [38].
Similarly, the Cenal coal-fired power plant in Turkey used IoT sensor data analyzed by
Al to stabilize combustion temperature and optimize soot cleaning, achieving annual
savings exceeding USD 700,000 and a 15% reduction in NOx emissions [39]. Beyond
predictive maintenance, these technologies enhance quality control, as seen at a BMW
factory where convolutional neural networks analyze visual data from IoT cameras to
automatically inspect car body quality [40]. Furthermore, companies like Enel leverage
IIoT for operational efficiency, using devices to monitor grid load and optimize energy
consumption [39].

3.2. Enterprise Resource Planning Systems

Enterprise resource planning (ERP) systems provide data related to enterprise man-
agement such as production processes, supply chains, human resources, financial planning
and accounting, and product quality [41]. They integrate data from different departments
such as finance, production, logistics, and human resources are structured and used to
optimize business processes. However, data from ERP systems have their own peculiarities
that are important to consider when using them for analysis and decision-making. Let us
consider them in more detail:

e Data in ERP systems are stored in a structured manner, usually in relational databases
(e.g., SQL). This means that information is organized into tables where each row
represents a record and each column represents an attribute (e.g., product name, quan-
tity, price). Importantly, modern ERP systems provide an application programming
interface (API) to access the data, allowing integration with other applications such as
business intelligence or Al systems. This greatly simplifies data analysis due to the
clear structure of data collection and presentation, as well as the ability to use standard
database tools (e.g., SQL queries).

e Data are updated less frequently than data from sensors or IIoT devices. For example,
inventory data may be updated once a day, while financial reports may be updated
once a week or month. Many processes in ERP systems, such as financial reporting,
are performed in batch processing, which causes delays in data updates, and data are
often manually entered into ERP systems, which also slows down data accumulation
and processing. On the one hand, low update frequency simplifies data management,
as real-time processing is not required, but on the other hand, it makes it difficult to
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make quick decisions. Also, ERP systems have limited applicability for tasks that

require real-time data (e.g., production line management).

e  ERP systems rarely operate in isolation. They integrate with other enterprise systems
such as manufacturing execution system (MES), customer relationship management
(CRM), and supply chain management. To integrate ERP with MES or supervisory
control and data acquisition (SCADA), middleware such as Apache Kafka or MQTT
are often used to provide real-time data transfer [42]. For integration of such systems,
the unified standards such as Open Platform Communications Unified Architecture
(OPC UA) or electronic data interchange have been developed [43].

e  ERP systems are designed to process large volumes of data, making them suitable for
large enterprises. However, this requires significant computing resources. By storing
historical data, these systems enable trend analysis, which in turn supports long-term
strategic decision-making.

The main challenges of using ERP systems in industry are first the differences in data
formats between ERP systems and other sources and second the need to synchronize data
in real time to make certain operational decisions based on information from ERP systems.

For example, Siemens uses the SAP ERP system to manage production processes at
its plants. The system integrates data on inventories, orders, and production capacity to
optimize scheduling and reduce downtime [44]. In the automotive company Toyota, ERP
is used for supply chain management, providing transparency and control over all stages
of supply, from the purchase of raw materials to the delivery of finished products, which
minimizes inventories and reduces costs [45].

3.3. SCADA Systems

SCADA systems are used to monitor and control industrial processes, providing real-
time data collection, visualization, and analysis [46]. Data from SCADA systems have their
unique features, which are important to consider when using them for monitoring and
control. Let us consider these features in more detail.

e  SCADA systems operate in real time, which means that data from sensors, transduc-
ers, and other devices are continuously being collected and processed. This allows
operators to react instantly to changes in production processes.

e  SCADA systems collect data at a high level of detail, which means there are a large
number of parameters for each device or process. For example, for a pump, parameters
such as pressure, temperature, vibration, rotational speed, and energy consumption
can be monitored. Integrating data from a large number of sensors and devices requires
powerful computing resources for processing. To manage such data streams, a ‘tagging’
system is commonly used, meaning that each parameter in the SCADA system is
identified by a unique label (‘tag’), allowing data to be easily tracked and analyzed.

e Data in SCADA systems are often redundant, containing duplicate or irrelevant
information. This redundancy stems from the large number of data sources and the
high frequency of data updates. For instance, pipeline pressure might be measured
by two independent sensors, creating duplicates. Furthermore, not all collected data
are useful for analysis; ambient temperature readings, for example, may have no
impact on the core process but are still logged by default. Consequently, data post-
processing is essential to eliminate this redundancy using methods such as averaging,
interpolation, and duplicate removal.

A core functionality of SCADA systems is the automated notification of critical events
through alarms that activate upon parameter excursions or anomalous conditions, thereby
enabling prompt operational response. Nevertheless, leveraging these systems as data
sources for broader industrial applications poses two principal challenges: the demand for
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high-performance, real-time data processing (a trait shared with IoT architectures) and the
imperative of ensuring stringent cybersecurity.

3.4. Other Sources of Industrial Data

In addition to those listed above and most commonly used in manufacturing, indus-
trial companies can use data from:

e  MES systems, which provide information about the production process, including
data on product quality and lead times [47].

o  CRM systems, which contain data about customers, orders and sales, which is useful
for demand forecasting [48].

e  Avvariety of external data sources that are not directly industrial: market data, weather,
or logistics data that can influence production processes [49].

4. Challenges of Industrial Data Collection, Processing, and Storage at
Industrial Facilities

The successful implementation of Al solutions in industrial enterprises depends on
robust data management across the entire lifecycle—from collection to analysis. In this con-
text, two widely adopted paradigms for handling data are ETL and ELT. Both approaches
comprise the same three stages (extraction, transformation, and loading), but differ in
the sequence of operations. In ETL, data undergo transformation during an intermediate
preparation phase before being loaded into the target repository, such as an enterprise
data warehouse (illustrated in Figure 2). By contrast, ELT first loads raw data directly
into the target system (e.g., cloud data warehouses or data lakes), where transformation is
performed afterward.

The selection between Extract, Transform, Load (ETL) and Extract, Load, Transform
(ELT) methodologies represents a critical architectural decision in industrial data man-
agement pipelines. Both approaches facilitate data integration from disparate sources,
yet differ fundamentally in their execution sequence and operational characteristics, as
summarized in Table 1.

Table 1. Comparison between ETL and ELT approaches for industrial data management.

Aspect ETL (Extract, Transform, Load) ELT (Extract, Load, Transform)
Processing Data transformation occurs Data transformation occurs after
Sequence before loading into target system loading into target system
Transformation Separate processing Within target data

Location server/staging area warehouse/lake

Data Volume

Suitable for moderate volumes of

Optimized for large volumes of

Handling structured data structured and unstructured data
s Limited flexibility; High flexibility; transformations
Flexibility . . " .
transformations are predefined  can be modified post-loading
Real-time Challenging due to More adaptable to real-time and
Processing preprocessing requirements streaming scenarios
Infrastructure Requlres S ubstantial . Demands powerful target system
. intermediate processing . . .
Requirements with computational capacity
resources
Data Latency Higher latency due to staging Lower latency for raw data

transformations

availability
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Table 1. Cont.

Aspect ETL (Extract, Transform, Load) ELT (Extract, Load, Transform)
Implementation Moderat.e complexity w1t.h Higher com.plex1ty. in managing

. well-defined transformation transformations within target
Complexity

rules system

Cost Higher intermediate Higher target system and storage
Considerations  infrastructure costs costs
Typical Use Data warehousing, structured Big data analytics, data lakes,
Cases business intelligence exploratory analysis
Industrial Mature processes with stable Evolving processes requiring
Applicability data schemas analytical flexibility

In ETL, all these operations take place outside the target system, in the preparation
phase. In industrial enterprises, where significant amounts of data are generated from
multiple sensors and other sources in real time, the use of edge computing technologies can
significantly reduce the data transfer load and reduce the amount of information stored in
enterprise data warehouses or cloud platforms. For example, data warehouses that support
online analytical processing (OLAP) require data to be converted into a SQL-compatible
relational format beforehand. However, this approach has a significant drawback: the
transformations are performed once, making the ETL process not flexible enough. If there
is a need to apply a new type of analysis to already transformed data, a complete redesign
of the data processing model may be required.

In contrast to ETL, the ELT method offers more flexibility because the data are loaded
into the data warehouse in its original form, where they can be validated, structured, and
transformed at any time. This allows for countless transformations of raw data that are
stored indefinitely. However, in industrial environments where data volumes are extremely
large, storing all data in raw form is often not justified in terms of cost and resources. As a
result, the ELT method is not widely used in industry, where more optimized approaches
such as ETL using edge computing for data preprocessing are preferred.

Despite these challenges, ELT can become a viable option for medium-sized enter-
prises under specific conditions. Key enabling factors include (i) access to scalable and
cost-effective cloud storage and computing services (e.g., pay-as-you-go models from
major cloud providers), which lower the initial infrastructure investment; (ii) evolving
or exploratory analytical needs that require the flexibility to reprocess raw data without
re-ingesting it; and (iii) the availability of in-house or external expertise in modern data
stack technologies (e.g., cloud data warehouses like Snowflake or BigQuery [50]) that are
designed for ELT workflows. For such enterprises, ELT can reduce the initial complexity of
data pipeline design and accelerate time-to-insight from new data sources.

In industrial contexts, the ETL approach remains predominant due to its maturity and
alignment with structured manufacturing data environments. The predefined transforma-
tion logic in ETL ensures data quality and consistency, which is crucial for mission-critical
manufacturing operations. However, ELT is gaining traction in scenarios requiring rapid in-
gestion of heterogeneous data sources and when analytical requirements evolve frequently.
The choice between these paradigms should consider factors including data character-
istics, computational resources, latency tolerance, and the dynamic nature of analytical
requirements within the smart manufacturing ecosystem.

In the following section, we focus on the ETL model of data collection, processing, and
storage, as it remains the predominant approach in industrial enterprises. Specifically, we
examine methods for data acquisition and preparation, preprocessing techniques, and the
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application of ML and DL for data analysis, illustrated through the industrial data stream
presented in Figure 2.

4.1. Data Collection and Preparation for Al Applications

Data collection in industrial facilities is complicated by a number of factors such
as the heterogeneity of data sources, the large volume of data, and the need for real-
time operation. This makes it different from, for example, biomedical data collection for
Al [51-53] or machine vision applications [54]. The main requirements for industrial data
collection that can be further utilized in Al systems include:

e Integration of data from different sources. Data can come from sensors, IIoT devices,
ERP and SCADA systems, which requires them to be combined into a unified sys-
tem [2]. For example, in a chemical plant, data from sensors that monitor pressure and
temperature are integrated with data from an ERP system that manages raw material
inventory. This allows the production process to be optimized and costs to be reduced.

e Real-time and stream processing. Stream processing technologies such as Apache
Flink or Apache Storm [55] are used to process real-time data. For example, in a
factory, data from assembly robots are processed in real time to detect defects early
in the production process. This minimizes scrap losses and increases product quality.
In real-time data processing, edge computing is tried to be used [56]. The latter is an
approach to data processing in which computations are performed closer to the data
source (at the ‘edge’ of the network, hence ‘edge’) rather than in centralized cloud
servers. This reduces computational latency, reduces the load on the network as it
reduces transmission costs and improves reliability and security by preventing data
leakage over the Internet, and as a result, improves system performance, especially in
environments where data processing speed is critical. However, edge computing has
disadvantages, in particular, computing resources on edge devices are usually limited,
and also the distributed network of edge devices requires a complex management and
synchronization system.

e  Ensuring data quality. During the data acquisition phase, it is important to ensure data
accuracy and completeness, which requires the use of calibrated sensors and reliable
data transfer protocols. This raises the issue of regularly checking the devices and the
industrial data itself for accuracy and errors [57].

The decision between edge and cloud computing architectures represents a critical
strategic consideration in industrial data management. Cloud computing refers to the
delivery of computing services, including servers, storage, databases, networking, software,
and analytics, over the internet (“the cloud’) on a pay-as-you-go basis. This paradigm offers
centralized resources that can be rapidly provisioned and scaled, making it particularly
suitable for applications requiring substantial computational power and storage capacity.
In contrast, edge computing brings computation and data storage closer to the location
where it is needed, improving response times and saving bandwidth.

The choice between these computing paradigms should be guided by specific oper-
ational requirements and constraints rather than technological trends alone [58]. Edge
computing is preferred when low latency is critical for applications requiring real-time
control, such as robotic assembly lines or safety monitoring systems where milliseconds
matter. It is also advantageous in scenarios with bandwidth constraints, such as remote
industrial sites with limited network connectivity or high data transmission costs. Further-
more, edge computing becomes essential when data privacy and security are paramount,
particularly for sensitive production data that must remain within factory premises due
to regulatory or intellectual property concerns. Additionally, it provides operational re-
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silience for applications that must continue functioning during network outages or cloud
service interruptions.

Conversely, cloud computing is more appropriate when scalable resources are needed
for large-scale data analytics, model training, or historical analysis requiring substantial
computational power. It excels in scenarios where collaborative analysis is essential for
multi-site operations requiring centralized data aggregation and cross-facility insights.
Cloud platforms are also ideal for long-term storage and archiving of historical data for
regulatory compliance or trend analysis over extended periods. Moreover, they offer
advanced AI/ML capabilities for complex model training and inference tasks that benefit
from cloud-based Al services and GPU clusters [59].

In practice, most modern industrial implementations adopt a hybrid approach,
where edge devices handle time-sensitive preprocessing and immediate control tasks,
while the cloud manages resource-intensive analytics, model retraining, and enterprise-
wide data integration. This symbiotic relationship ensures optimal performance while
maintaining the benefits of centralized intelligence and distributed execution, creating
a balanced architecture that addresses both immediate operational needs and long-term
analytical requirements.

4.2. Data Preprocessing

Data preprocessing is an important step to prepare data for use in Al models. In the
case of industrial data, the main steps include the following procedures [60].

e Data validation and cleaning involves fixing data gaps and filtering out noise in
the data. Missing values can be filled in using interpolation or ML techniques, e.g.,
regression algorithms such as the k-nearest neighbor method. For example, reactor
temperature data may contain missing values due to sensor failures. Interpolation
can recover missing values and ensure data continuity. Data filtration typically uses
techniques such as moving average, digital filters, or wavelet transforms that help
remove noise and improve data quality. For example, equipment vibration data may
contain noise due to external influences. Filtering helps to isolate useful signals to
analyze the condition of the equipment.

e Data transformation includes both normalization and standardization. The first is
to bring the data to a single normalized range, e.g., [0,1] or [—1, 1], to eliminate the
effects of data scale on the performance of Al models. The latter is particularly relevant
when processing data from sensors at different scales and of different physical nature.
For example, a manufacturing facility may collect temperature and pressure data
inside the plant, which have different scales. Normalization allows them to be used
in the same Al model. Standardization involves the conversion of data to a standard
normal distribution with zero mean and unit variance. This is also important when
building ML models. In the previous example, temperature and pressure data can be
standardised for use in clustering algorithms. One of the simplest ways to perform
data harmonization is the standard score conversion procedure, which is well known
in statistics. If we have a set of measurements {x;|i = 1,... N}, where N is the number
of measurements, we calculate the standardised score as z; = (x; — X) /0, where ¥ is
the mean and ¢ is the standard deviation of the set of measurements {x;}.

A practical vibration analysis scenario for predictive maintenance demonstrates the
utility of filtering and interpolation. In a chemical plant, a centrifugal pump’s vibration
sensor captures a signal often contaminated with high-frequency noise from electromag-
netic interference and adjacent equipment. Here, a moving average or band-pass filter
is essential for noise suppression, thereby revealing the underlying vibration signature
associated with the pump’s rotational components to facilitate fault detection in bearings
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or impellers. Furthermore, transient communication glitches that create data gaps can be
resolved using linear interpolation between known points. This data reconstruction is vital
for maintaining time-series continuity, ensuring the data are suitable for input into machine
learning models designed for failure prognosis.

4.3. Data Integration

After data cleaning and transformation, the next stage of data preparation is the
process of data integration (see Figure 2), which is one of the key tasks when implementing
Al in industrial enterprises. The main problem of industrial data integration is data
heterogeneity. Thus, due to the peculiarities of technological processes and equipment,
data from different sources may have different formats (CSV, JSON, XML, etc.), sampling
frequency, and level of detail. Therefore, ETL processes are used to convert data into a single
format. Usually, in specialized cloud platforms (e.g., AWS IoT, Microsoft Azure), edge
computing for processing data closer to the source and middleware for data aggregation
are used for this purpose [56]. Ensuring the confidentiality and protection of industrial data
during transmission and storage is usually performed using encryption and authentication
protocols such as OPC UA [61].

4.4. Machine Learning in Industrial Data Analysis

ML plays a key role in analyzing industrial data, enabling the identification of patterns,
classification and prediction of processes [26]. Figure 3 shows schematic representation of
ML methods applied in various industrial data analysis tasks. ML methods fall into four
main categories that find their applications in industrial data processing.

1.  Supervised learning is used when all accumulated data are labeled and the desired
outcome or goal is known. Then the problem is defined as a type of classification and
regression task, such as determining the state of equipment (operational/faulty) or
predicting parameters (temperature, pressure) based on collected labeled historical
data [62].

2. Unsupervised learning is applied to data which have no labels (tags) and used to
find hidden structures in data, such as clustering to detect anomalies or analyzing
relationships between parameters of manufacturing processes [63].

3.  Reinforcement learning (RL) utilizes a trial and error learning approach to learning
by direct interaction with the environment [64]. It does not need supervision or a
predefined dataset with/without labels and is applied whenever tasks in dynamic
environments requiring real-time decision-making need to be solved, allowing adap-
tation to changing environmental conditions. Therefore, RL is most effective when
applied to tasks requiring interaction with a changing environment, e.g., application
in manufacturing process optimization, where the model learns to control parameters
(e.g., conveyor speed) to maximize efficiency, robot motion control, or interaction of
several linked machines in a serial production line [65].

4. Semi-supervised learning (SSL) is increasingly finding application in industrial data
processing tasks when the cost of labeling data samples is expensive or time con-
suming [66]. The main difference between semi-supervised and fully supervised ML
is that the latter can only be trained using fully labeled datasets, while the former
uses both labeled and unlabeled data samples during training. For example, deter-
mining the type of faulty data samples detected is a difficult labor-intensive task for
engineers. As a consequence, most faulty samples turn out to be unlabeled, but they
still contain important process information. If these unlabeled samples can be put to
good use, the efficiency of the fault classification system can be greatly improved. SSL
methods modify or augment the supervised algorithm, the so-called base learner, to
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incorporate information from unlabeled examples. The labeled data are used to justify
the predictions of the base learner and add structure (e.g., the number of existing
classes and the main characteristics of each class) to the learning task. In this case,
semi-supervised MLs using both labeled and unlabeled samples yield an improved
fault classification model compared to a model that depends only on a small fraction
of labeled data samples.
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Figure 3. Schematic representation of ML methods applied in various industrial data analysis
tasks. The arrows indicate the correspondence between ML methods (see Section 4.4) and their
most typical applications in production systems (see Section 5.4). The mapping provides a decision-
support framework for selecting Al tools based on problem characteristics: supervised learning
for predictive modeling from historical data and reinforcement learning for adaptive control in
dynamic environments.

Traditional ML methods require prior feature extraction, the so-called feature engi-
neering, including the creation of new features, selection of relevant data, and coding of
categorical variables. Applied to industrial data analysis, feature engineering addresses the
following tasks.

e Feature extraction. Creating new features from existing data, such as calculating deriva-
tives or integrals for time series, can reveal underlying dynamics that are not apparent
in the raw signal. For instance, methods inspired by the analysis of complex systems
can help identify synchronized patterns or coherent structures within chaotic-looking
industrial data [67]. For example, at a wind farm, wind speed data can be converted
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into features such as average speed over the last hour, which helps to improve predic-
tion of power generation without creating redundant information.

e  Feature selection or data dimensionality reduction. Removing redundant or irrelevant
features using techniques such as Principal Component Analysis (PCA), Independent
Component Analysis (ICA), or Lasso regression. For example, in manufacturing, data
on thousands of sensor measured parameters can be reduced to a few key attributes
which can be a combination of the original measured quantities.

e  Encoding categorical data numerically using one-hot encoding or label encoding. For
example, in logistics, cargo type data (e.g., “fragile,” “dangerous,” etc.) can be encoded
for use in route optimization models.

However, DL eliminates the need for feature creation by automatically extracting
useful insights from raw data. Among the DL techniques, most in demand are:

e Artificial neural networks (ANNs) are the foundational architecture of deep learning,
consisting of interconnected layers of neurons that can model complex relationships in
data. ANNSs are applied in a wide range of industries, including retail for demand fore-
casting, and in logistics for optimizing supply chain operations. Their versatility makes
them suitable for both regression and classification tasks across diverse domains.

e  Recurrent neural networks (RNNs), including long short-term memory (LSTM) and
reservoir computing (RC), for time series prediction and digital twin creation. These
are particularly useful in industries like finance for stock price forecasting, in energy
for predicting electricity demand, and in manufacturing for predictive maintenance.

o Convolutional neural networks (CNNs) for visual inspection tasks such as product quality
control. CNNs are widely used in the automotive industry for detecting defects in car
parts and in retail for automated checkout systems.

e Autoencoders (AEs) for automatic feature extraction which is particularly useful in
vibration or sound analysis tasks for fault diagnosis. AEs are applied in industries
like aerospace for monitoring aircraft engine health and in manufacturing for anomaly
detection in machinery.

o  Transformers, originally developed for natural language processing (NLP), have be-
come a cornerstone in sequence modeling due to their ability to handle long-range
dependencies efficiently. Transformers are used in industries for applications such as
automated customer support (chatbots) and document summarization in legal and
financial sectors. Their self-attention mechanism makes them highly effective in tasks
requiring context-aware decision-making.

These techniques enable the creation of digital twins, optimizing production processes
and improving equipment reliability. However, the quality of ML models directly depends
on the quality and completeness of the data used for training, which requires careful
preprocessing and integration of data from different sources. Therefore, in the next section,
we focus on the issues of evaluating the quality of industrial data for training Al models.

5. Assessing the Quality of Industrial Data

Data quality is a critical factor for the successful implementation of Al in industry.
Poor data quality can lead to incorrect predictions, erroneous decisions and, as a result,
significant financial and production losses. Assessing data quality requires context, as
it can only be evaluated based on purpose and use. This context is often referred to as
‘fitness for use’ [68]. The usability of data includes a number of factors that primarily
determine its quality [69]. Data quality describes ‘the extent to which data is fit for use
by data consumers’ [70]. To define the various requirements, detailed sets of criteria have
been proposed to describe and measure individual aspects of industrial data quality. Here,
we summarize these approaches based on the idea of end-to-end integrated analysis of
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data quality throughout the entire cycle of data collection, processing and use through the
context of specific industrial tasks [71].

The implementation of projects to identify potentially useful patterns in industrial
datasets that can be used in 14.0 is usually based on a cross-industry standard process for
data mining (CRISP-DM) [72]. Figure 4A shows the six iterative steps of the CRISP-DM
process: business understanding, data understanding, data preparation, modeling, evalua-
tion, and deployment. Due to its success, CRISP-DM is considered one of the most widely
used process models in smart manufacturing and serves as an organizational framework
for the considerations underlying the formulation of industrial data quality criteria.

Access
Level

Business Data
Understanding Understanding

Data
Preparation

Administrative Level

Analytical
Level

Information

Application
Level

Knowledge

Figure 4. Integrated visualization of the cross-industry standard process for data mining (CRISP-DM)
(A) and four levels of classification of quality criteria for industrial data analysis (B). The arrows in the
CRISP-DM diagram (A) represent the iterative and non-linear character of the methodology, wherein
phase transitions (such as reverting from Modeling to Data Preparation) constitute a fundamental
characteristic. This framework synchronizes a four-level data quality assessment (B) with the CRISP-
DM process (A), ensuring data possess both technical fidelity and strategic business value for
informed decision-making at administrative and application levels.

When applying quality criteria to industrial data analysis projects, multidimensional
sets of criteria should take into account the life-cycle-dependent nature of their target
observation [73]. In discussing industrial data quality criteria, we limit our discussion to
data, information, and knowledge, which are integrated into the scope of CRISP-DM in
Figure 4A. The second step of CRISP-DM, ‘Data Understanding’, involves the verification
of data quality. For this purpose, CRISP-DM proposes exemplary guiding questions and
refers to requirements regarding the necessary quality of data and results that have been
previously assessed in the business understanding phase. This includes the creation of a
data quality report, which becomes the focus for data processing in the next step, ‘Data
Preparation’. After this point, CRISP-DM considers the data quality as guaranteed and only
revises it during the evaluation of the results of the data analysis process [72]. However,
given the changing nature of data during the introduction of digital technologies into
the production process, the quality criteria require constant monitoring and adjustment
throughout the process of analyzing data and building models based on it. This is similar
to the concept of total data quality management, which seeks to extend traditional total
quality management, which requires the consideration of product quality throughout the
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entire lifecycle [74]. In fact, data quality is directly related to the quality of data analysis,
which describes the extent to which products based on industrial data are usable by
specific customers.

5.1. Steps in Assessing the Quality of Industrial Data

The industrial data quality assessment criteria are grouped for ease of use and take
into account the changing perspectives of data handling. As we consider quality assessment
criteria focused on industrial applications, they are based on the principles of industrial
engineering, which focuses on a systems approach, methods, and problem solving in a
continuous improvement manufacturing environment, and include four main steps for
data-driven decision-making processes:

1.  Data access and provisioning. The first step is to provide access to the necessary data
sources, including selecting relevant sources, filling in missing data, and preparing
data for analysis. This step corresponds to the initial stages of CRISP-DM—Business
Understanding’ and ‘Data Understanding’ (see Figure 4A).

2. Data analysis. In the second stage, data are analyzed to extract useful information.
Various tools and techniques are used, including data science algorithms. This stage
covers the ‘Data Preparation” and "‘Modeling’ stages in CRISP-DM.

3. Application of information. The third stage is the utilization of the information ob-
tained in industrial processes. This includes both one-off analyses and long-term
monitoring. In CRISP-DM, this corresponds to the ‘Deployment’ stage, where knowl-
edge of the problem and subject matter knowledge help to extract the necessary
knowledge from the data.

4. Process management. The fourth stage covers the management of peripheral pro-
cesses such as long-term data management, responsibility allocation, security, and
ethical use of data. This step has no direct analogue in CRISP-DM, but is critical for
industrial applications.

Using these four steps, it is possible to clearly structure the criteria applicable to data
quality assessment. Quantitative data quality criteria should be defined at the earliest stage
of the project, but if quality problems are later identified, adjustments to the criteria and the
data collection and processing procedure can be made at any stage in an iterative manner.

5.2. Level of Assessing the Quality of Industrial Data

Let us consider the criteria for assessing and measuring industrial data quality based
on the concept of continuous end-to-end analysis. The data quality criteria are structured
into four levels shown in Figure 4B and corresponding to the stages of data analysis
presented in Section 5.1.

1. Access level covers the collection of the necessary data according to the defined
analysis objectives at the stage of understanding the processes in the industrial system.
This level addresses aspects related to the quality of the raw (‘raw’) data and relevant
business processes. The criteria shown in Table 2 support the objectives of collecting
and preparing data for analysis.

2. Analytical level refers to the quality of data analysis and is primarily concerned
with information. This corresponds to the second and third step of CRISP-DM (see
Figure 4A) ‘Data Preparation” and ‘Modeling’. In this step, data access needs the
context of a special use case or problem definition. The context guides the processing
steps using at least one special analysis method. The criteria presented in Table 2
assess the quality of the data analysis.
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3. Application level concerns the assessment of data quality during the application
phase in industrial settings, which is related to the ‘Evaluation” and ‘Deployment’
phases of CRISP-DM (see Figure 4A). The criteria for this level, presented in Table 2,
aim to establish high quality of data analysis results. They specifically target the
inclusion of personnel not previously involved in the analyses as future users of
deployment solutions.

4. Administrative level introduces criteria for assessing the quality of industrial data in
terms of being able to administer it effectively. Table 2 shows the proposed criteria
that are associated with all phases of CRISP-DM (see Figure 4A).

Using these four steps, it is possible to clearly structure the criteria applicable to data
quality assessment. Quantitative data quality criteria should be defined at the earliest stage
of the project, but if quality problems are later identified, the criteria and data collection

and processing procedures can be adjusted at any stage in an iterative manner.

Table 2. List of criteria for assessing the quality of industrial big data.

Criterion

Description

Measurement/Evaluation

Access level

The data must be available through defined

Accessibility interfaces for further processing Evaluated binary: available/not available.
Relevance The data must be relevant to the purpose of ~ Evaluated at three levels: insufficient, ideal,
the analysis. excessive.
Timeliness The data should be available at the right time. ~Evaluated binary: timely/not timely.
The data should be free of technical Number of duplicate and redundant data
Uniqueness duplicates and redundancy, which is ensured identified during analysis using algorithms to
by basic data integration [see Section 4.3]. identify repeated records.
Check that data from different systems are
The data should be consistent over time and ~ 10t Inconsistent. .
. . L The data are up to date and do not contain
Consistency between different sources which is ensured . .
. . : . time gaps or anomalies. The number of
by basic data integration [see Section 4.3]. . . . X
inconsistencies between sources and time
periods is assessed.
The data must conform to established rules
Validity (format, value ranges) and must not contain ~ Evaluated binary: valid /non-valid.
inconsistencies.
Analytical level
Accuracy The data must match the reference values. Measured as the proportion of correct values
in the total data.
Completeness The data should be complete, with no Measured as the proportion of non-zero
P omissions. values.
. Evaluated through logical consistency checks,
The da'ta shquld be free of logical " proportion of data passing validation,
Error-free inconsistencies. Defined by the objectives of . . . .
the analvsis number of inconsistencies with reference data,
ysis: automated tests and anomaly analysis.
Value Added Data should enable the creation of new Evaluated through the cost-benefit ratio of

information useful for analysis.

the data.
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Table 2. Cont.

Criterion

Description

Measurement/Evaluation

Application level

Cost-effectiveness

Solutions must be economically justifiable.

Evaluated through the ratio of costs to value
achieved.

Conciseness of
presentation

The results of the analysis should be compact
and understandable.

Evaluated through user surveys for ease of
comprehension, share of visualized data in
the total data volume, number of key
indicators in reports compared to the total
data volume.

Consistency of

Solutions should be homogeneous and

Evaluated through the number of errors or
inconsistencies in data structure, the

presentation compatible with previous data. proportion of data validated against data
homogeneity metrics.
s Results should be presented in L
Interpretability understandable terms and units. Evaluated qualitatively through surveys.
Understandability Decisions should be easily understandable for ~Evaluated through ad hoc interviews with

operational decision-making.

experts.

Administrative level

The data must be available through defined

Accessibility interfaces for further processing, Evaluated binary: available/not available
The data must be relevant to the purpose of ~ Evaluated at three levels: insufficient, ideal,
Relevance . .
the analysis. excessive
Timeliness The data should be available at the right time. ~Evaluated binary: timely/not timely.
The data should be free of technical Number of duplicate and redundant data
Uniqueness duplicates and redundancy, which is ensured identified during analysis using algorithms to
by basic data integration [see Section 4.3]. identify repeated records.
Check that data from different systems are
The data should be consistent over time and 0t Iconsistent. .
. . L The data are up to date and do not contain
Consistency between different sources which is ensured . .
. . : . time gaps or anomalies. The number of
by basic data integration [see Section 4.3]. . . . .
inconsistencies between sources and time
periods is assessed.
The data must conform to established rules
Validity (format, value ranges) and must not contain =~ Evaluated binary: valid /non-valid.

inconsistencies.

5.3. Developing Recommendations for Preparing Big Data for Al Implementation

The successful deployment of Al models is fundamentally dependent on the qual-

ity and structure of the underlying data. This subsection establishes a set of actionable

recommendations for the preparation of industrial big data, addressing the critical stages

of collection, processing, and integration to ensure robust model training and reliable

decision-making.

5.3.1. Industrial Data Collection

A robust data collection framework is the cornerstone of effective Al training in

industrial settings. This phase must address three critical requirements to construct a

dataset that is comprehensive, timely, and of high fidelity:
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Integration of Heterogeneous Data Sources. Industrial data are inherently multi-
source, originating from systems such as SCADA (Supervisory Control and Data
Acquisition), ERP (Enterprise Resource Planning), and IoT sensors. Integrating these
disparate streams into a unified data platform is essential to form a holistic view of
operations, combining equipment status, process parameters, and management data.
Technologies like Apache Kafka or MQTT middleware are commonly employed to
facilitate this real-time data integration and synchronization.

Real-time Data Acquisition and Processing. For time-sensitive industrial processes,
the ability to acquire and process data in real time is critical. This capability enables
rapid response to anomalies, minimizing production scrap and downtime. Imple-
menting stream processing frameworks (e.g., Apache Flink, Apache Storm) allows
for continuous data analysis as it is generated. Furthermore, leveraging edge comput-
ing architectures processes data closer to source, significantly reducing latency and
alleviating network load.

Proactive Data Quality Assurance. The accuracy and reliability of AI models are
directly contingent upon the quality of the input data. To mitigate the risks of erro-
neous predictions caused by poor data, a proactive approach to quality assurance
is mandatory. This involves the regular maintenance and calibration of sensors, the
use of robust and reliable data transmission protocols, and the implementation of
automated data quality monitoring systems to detect and correct errors and omissions
at the point of collection.

5.3.2. Data Processing

Following acquisition, raw industrial data must be cleansed and transformed to

rectify errors, inconsistencies, and inaccuracies inherent in collection. This processing

stage is critical for constructing a reliable dataset for Al training and primarily involves

three core procedures:

Data Cleansing and Denoizing. Industrial datasets frequently contain noise, outliers,
and missing values that can severely degrade model performance. To mitigate this,
a suite of signal processing techniques must be applied. This includes using inter-
polation methods (e.g., linear or spline) to impute missing points and digital filters
(e.g., moving average filters or wavelet transforms) to suppress noise and isolate
meaningful signals.

Normalization and Standardization. The heterogeneous nature of industrial sensors
results in data with varying scales and units. To ensure stable and efficient model
convergence, these data must be brought to a common, dimensionless scale. Nor-
malization (e.g., scaling to a [0, 1] range) and standardization (e.g., scaling to zero
mean and unit variance) are essential preprocessing steps, particularly for machine
learning algorithms like gradient-based optimizers that are highly sensitive to input
feature magnitudes.

Data Structuring and Feature Engineering. Processed data streams must be structured
into a coherent format suitable for model ingestion. This involves aligning time-series
data from disparate sources, handling different sampling frequencies, and creating
derived features that enhance predictive power. While ETL or ELT pipelines are
instrumental in this structuring, the focus at this stage is on the transformational logic:
aggregating, windowing, and engineering features to create a curated training dataset.
Cloud platforms such as AWS IoT or Microsoft Azure should be used to integrate
data from different sources; encryption and authentication protocols such as OPC UA
should be used to ensure data security.
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5.3.3. Data Governance and Management

Beyond initial processing, sustainable Al implementation requires robust data gov-
ernance to ensure security, integrity, and long-term usability. This involves establishing
policies and systems for two critical areas:

e Data Security and Access Control. Industrial data assets often comprise sensitive
operational intelligence and must be protected against unauthorized access and cyber
threats. A comprehensive security framework is essential, incorporating encryption
(e.g., AES-256) and authentication protocols (e.g., OPC UA) for data in transit and at
rest. This must be supplemented with rigorous role-based access control systems and
consistently updated security patches to mitigate evolving risks.

e  Long-term Data Storage and Lifecycle Management. The continuous refinement of
Al models depends on the systematic storage and management of historical data.
Implementing scalable, cloud-based data warehouses (e.g., Amazon S3, Google Big-
Query, or Azure Data Lake) enables cost-effective long-term archiving and facilitates
efficient analysis of large historical datasets. A defined data lifecycle policy ensures
that data are retained, archived, and purged according to value, maintaining system
performance and relevance for future model retraining.

Adherence to these recommendations for data preparation and management estab-
lishes a reliable foundation of high-quality data. This foundation is a critical enabler for
developing accurate AI models, which in turn drive significant business value through
improved forecasting, operational optimization, and reduction in costs and downtime.

5.3.4. Data Quality Assessment for ML-Based Models

The performance and reliability of ML models are fundamentally constrained by
the quality of their training data. To mitigate the risks of erroneous predictions and
flawed decision-making, the data quality assessment framework established in Section 5.2
and Table 2 must be actively employed throughout the Al project lifecycle. This entails
continuously validating data against these criteria and iteratively refining data collection
and processing pipelines based on the results.

In Table 3, we summarize the research findings and present a concrete analytical
comparison of ML methods in smart manufacturing. This table systematically matches
common industrial tasks with suitable ML paradigms and specific algorithms. Specific
results from the application of these technologies are described below, with appropriate
references to the original work.

Table 3. Comparison of ML methods for typical industrial data analysis tasks.

Industrial Task ML Category Key Methods Strengths Notes [Sources]
Prediction of equipment
Predictive Supervised SVM, Random High accuracy in failures based on historical
- . LT data from sensors (e.g.,
Maintenance Forest, ANFIS failure prediction o
vibration, temperature, and
other bearing data) [62,75]
Automated feature  Sufficient increase in the
. extraction from accuracy of predicting the
Deep Learning RNN, LSTM, RC images; High condition of industrial
precision equipment [76-78]
Multivariate CNN for defect detections
Quality Control  Deep Learning CNN, AE time-series outperformed the traditional

forecasting computer vision [79-81]
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Table 3. Cont.

Industrial Task ML Category Key Methods Strengths Notes [Sources]
Improving industrial fault
. One-Class SVM, Effective with detec.tlon with one—;lass deep
Anomaly Unsupervised . unlabeled data; learning models trained solely
) . Isolation Forest, e )
Detection Learning Identifies novel on normal data, without
AE & VAE . .
failure modes needing labeled
anomalies [63,82-84]
Autonomous Enables self-improving
real-time systems through trial-and-error
Process Reinforcement DDPG, TD3, PPO, dNecilorc’;—;n?kTg; ler;a‘fgrignin;;nzgliat;[orlltwm );
Optimization Learning Q-learning & DON o eec Fot precise - evIFoNments (digtta S

physical models;
Handles complex
state-action spaces

Reduces online computation by
87.7% compared to traditional
optimization [85-87]

Soft Sensor

Semi-supervised

Learning

Label Propagation,
Semi-supervised AE

Reduces need for
expensive labeled
data; Leverages

unlabeled process

Boosting fault diagnosis
accuracy by leveraging
unlabeled data to augment
scarce labeled examples [66]

data

5.4. Utilizing ML-Based Techniques

Collected and preprocessed data serve as the foundation for building Al systems using

a diverse suite of ML technologies. While Figure 3 provides a high-level overview of key

applications in smart manufacturing and Section 4.4 introduces various ML approaches, this

section focuses on their practical deployment. Given that the technical specifics of basic ML

algorithms in 14.0 are well covered in existing literature [26,65,66,88], including industry-

specific reviews [62,89], we instead highlight the strategic mapping of ML paradigms to

characteristic industrial problems.

5.4.1. Supervised Learning for Predictive Modeling

Supervised learning is deployed for tasks where the goal is to map inputs to a known

output, primarily falling into classification and regression.

Classification: For tasks such as equipment state determination or part inspection,
algorithms like Support Vector Machines (SVMs), Adaptive Neuro-Fuzzy Inference
System (ANFIS), and Random Forests are highly effective. Researchers often combine
such classifiers to boost their efficiency. A common approach is to integrate them with
low-cost sensors, including RGB cameras, accelerometers, and gyroscopes. This syn-
ergy, especially when powered by DL algorithms like CNNSs, facilitates sophisticated
visual monitoring capabilities.

To enhance the accuracy and robustness of fault detection and diagnosis in an indus-
trial steam turbine, Salahshoor et al. [90] developed a hybrid framework fusing an
ANFIS and a SVM via an ordered weighted averaging operator. This data fusion
strategy capitalized on the complementary strengths of both classifiers, yielding a
system that outperformed either classifier used in isolation. The results demonstrated
tangible improvements, including a reduction in diagnosis time for key faults—such
as cutting the time for a thermocouple fault from 32 to 13 samples—and the elimina-
tion of specific misclassifications, thereby increasing overall diagnostic reliability and
reducing the potential for false alarms.

Other example here is study [91], where a cost-effective IMU sensor (MPU6050) captur-
ing three-axis accelerometer and gyroscope data was used to monitor the condition of a
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computer fan. Instead of relying on expensive or specialized hardware, the authors cre-
atively transformed the multi-axis vibration signals into time-frequency spectrograms
using the Short-Time Fourier Transform. These spectrograms were then combined into
a single RGB image, effectively converting vibration analysis into a visual recognition
task. This RGB image was processed using a CNN, which successfully classified the
fan’s operational state—such as normal, idle, or faulty—with high accuracy. This
approach demonstrates how low-cost sensors, when paired with DL techniques like
CNN s, can enable sophisticated visual monitoring and fault diagnosis without the
need for complex or expensive sensing systems.

Regression: For predicting continuous variables (e.g., temperature), methods like
linear regression and tree-based algorithms are standard. A critical application is
in accurate fault diagnosis, where surveys indicate SVM-based algorithms (39% of
studies) and ANN-based DL (34% of studies) are most prevalent [26]. The practical
implementation and enhancement of these methodologies are well illustrated in recent
research on tree-based approaches, which demonstrate both robust predictive capabil-
ity for continuous parameters and exceptional performance in diagnostic frameworks.
The application of tree-based models for forecasting continuous parameters is effec-
tively demonstrated by Tran et al. [92], who employed Regression Trees for one-step-
ahead prediction of vibration amplitude in a low methane compressor. Their work
shows the viability of tree-based models in time-series forecasting, a critical step for
anticipating machine degradation. Furthermore, the flexibility of these models enables
their enhancement and integration into sophisticated diagnostic frameworks. For in-
stance, Li et al. [93] developed an improved Decision Tree-based method incorporating
virtual sensor-based fault indicators for diagnosing faults in variable refrigerant flow
systems. Their hybrid approach, combining physical knowledge with data-driven
learning, provided more reliable diagnosis results compared to several other tree-
based data-driven models, demonstrating a pathway to augment diagnostic capability.
The robustness and high accuracy achievable with tree-based ensembles are further
emphasized by Noura et al. [94]. Their bi-phase framework, leveraging an ensemble
of tree-based classifiers including Random Forest and XGBoost, achieved perfect accu-
racy in both detection and diagnosis of faults in a diesel engine system. Notably, their
feature importance analysis revealed that optimal performance could be attained with
a minimal feature set, underscoring the method’s efficiency and interpretability. These
findings collectively demonstrate that tree-based algorithms constitute a versatile
toolkit, capable of addressing interconnected challenges of continuous state prediction
and discrete fault classification with high precision, thereby enriching the ecosystem
of machine learning techniques in industry prognostics.

5.4.2. Unsupervised Learning for Data Exploration

Unsupervised learning uncovers hidden structures within unlabeled data. Its primary

applications include:

Clustering: Algorithms such as k-means and DBSCAN are used to group similar data
points, identifying natural patterns or operational regimes. These methods are particu-
larly valuable in industrial process monitoring, where they help uncover underlying
structures in high-dimensional sensor data without requiring pre-labeled datasets.
For instance, Thomas et al. [95] evaluated various clustering techniques, including
k-means, DBSCAN, Balanced Iterative Reducing and Clustering using Hierarchies
(BIRCH), and mean shift, combined with dimensionality reduction methods like PCA
and ICA. Their study demonstrated that DBSCAN effectively identified fault states
in the Tennessee Eastman Process and an industrial separation tower, even when
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fault labels were unknown a priori. Similarly, Bagherzade et al. [96] proposed an
ensemble clustering approach to detect operational modes in industrial gas turbines.
By aggregating multiple partitions from diverse algorithms (e.g., k-means, hierarchical
clustering, DBSCAN, and others) and applying a consensus function, their method
identified consistent clusters corresponding to distinct operational states such as idle,
partial load, and full load. This ensemble strategy improved robustness and enabled
the discovery of sub-operational modes, providing a scalable framework for real-time
process monitoring and knowledge discovery in complex industrial systems.

The systematic review by Chaudhry et al. [97] provided a comprehensive analysis
of unsupervised clustering algorithms, evaluating their strengths and weaknesses
for pattern identification in complex data. This overview is particularly valuable for
industrial applications, offering guidance on selecting appropriate algorithms like
DBSCAN and k-means for process monitoring and operational regime detection in
high-dimensional sensor data.

Anomaly Detection: Techniques like one-class SVM, isolation forest, and AEs are vital
for identifying rare events or deviations from normal operation, which is crucial for
predictive maintenance [82,84].

Anomaly Detection: Techniques like one-class SVM, isolation forest, and AEs are
vital for identifying rare events or deviations from normal operation, which is crucial
for predictive maintenance. These one-class methods are particularly valuable in
industrial settings where labeled fault data is scarce, allowing models to be trained
exclusively on normal operating data to effectively detect anomalies [82,84].

For instance, AEs achieve high detection performance with F1-scores up to 93% on in-
dustrial datasets like UNSW-NB15, making them suitable for complex pattern recogni-
tion in sensor data and images [82]. Variational Autoencoders (VAEs) further enhance
this capability by learning probabilistic representations, improving generalization on
diverse operational data [84]. In contrast, Isolation Forest offers superior computa-
tional efficiency with inference times as low as 1.3 ms per sample, ideal for real-time
monitoring applications despite slightly lower accuracy (Fl-score: 91%) [82]. One-
Class SVM provides a balanced approach with 92% Fl-score and moderate latency
(2.8 ms), effective for boundary-based anomaly detection in multidimensional sensor
data [82]. The choice of method depends on operational constraints: deep learning
models (AEs/VAEs) for accuracy-critical applications versus lightweight methods
(Isolation iForest) for resource-constrained environments.

5.4.3. Deep Learning for Complex Pattern Recognition

DL excels at automatic feature extraction from high-dimensional, complex data.

Time-Series Analysis: RNNSs, particularly LSTM, and RC networks are standard for
analyzing temporal data like sensor streams [98,99]. So, Lei et al. [76] used a novel self-
supervised deep LSTM network for industrial temperature prediction in aluminum
processes application, which achieved a testing Root Mean Square Error (RMSE) as
low as 0.0078 and a prediction accuracy of up to 89.5% in the middle temperature zone,
demonstrating effective performance with limited labeled data. In other example,
Zhang et al. [78] used a LSTM network optimized with orthogonal experimental
design and feature engineering, which reduced the prediction RMSE by up to 97.6%
compared to the auto regressive integrated moving average (ARIMA) model on sensor
data from an industrial pump. The proposed LSTM-based methods demonstrated not
just a small improvement, but a dramatic increase in the accuracy of predicting the
condition of industrial equipment on real data, which directly indicates its practical
value for predictive maintenance in 14.0.
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e  Complex Signal Processing: DL is particularly powerful for tasks involving vibration,
sound, and image analysis, where raw data contain intricate patterns [100]. For
example, in [79], a CNN-based method for online weld defect detection was used with
a result of 99.38% mean classification accuracy, outperforming their previous audio-
based method (87.16% accuracy). In [81], a Deep CNN with data augmentation was
used for weld defect detection, achieving 99.01% accuracy and reducing overfitting on
a dataset of 9 680 images.

These capabilities are foundational for creating digital twins—digital representations
of physical assets that enable real-time simulation and optimization [101]. Modeling the
dynamic and stochastic behavior of such systems often leverages methods from the theory
of complex nonlinear systems [102-104].

5.4.4. Semi-Supervised Learning for Industrial Fault Detection and Diagnosis

SSL has emerged as a promising paradigm for industrial fault detection and diag-
nosis, effectively addressing the challenge of scarce labeled data which is commonplace
in real-world industrial settings. By leveraging a small set of labeled instances along-
side abundant unlabeled data, various SSL. methodologies have demonstrated significant
performance improvements.

For instance, the self-training approach has been enhanced with sophisticated confi-
dence measures. Zheng et al. [105] employed a Self-Training framework integrated with
a Temporal-Spatial Confidence Measure, enabling more reliable utilization of unlabeled
data for process fault diagnosis. Co-training strategies, which utilize multiple classifiers,
have also shown considerable efficacy. He et al. [106] implemented a Co-Training method
combining a Generative Adversarial Network and a Residual Network for steel surface
defect classification, achieving high accuracy with limited labels.

In the realm of feature extraction, DL models have been adapted for SSL. Jiang
et al. [107] utilized a Semi-Supervised Dynamic Sparse Stacked Auto-Encoders model for
fault classification, effectively capturing essential features from partially labeled datasets.
Similarly, in [108], a Semi-Supervised Deep Ladder Network was applied for gear fault
diagnosis, enhancing model robustness and diagnostic reliability by fusing information
from both data types.

Furthermore, intrinsically semi-supervised methods that incorporate unlabeled data
directly into the objective function have been developed. Jia et al. [109] proposed a Dynamic
Active Safe Semi-Supervised SVM, incorporating active learning and safety mechanisms to
ensure robust fault identification in expensive chemical processes. Generative models have
proven particularly powerful for handling complex data scenarios. Xu et al. [110] addressed
class imbalance in bearing faults using a Semi-Supervised Conditional Generative Adversar-
ial Network, significantly improving the diagnosis of rare failure modes. Ensemble-based
SSL methods like Tri-Training have also been successfully applied; Liu et al. [111] used
this approach with multiple base classifiers for milling chatter detection, demonstrating
enhanced model stability and noise immunity.

5.4.5. Reinforcement Learning in Industrial Process Optimization

RL has emerged as a transformative technology for industrial process optimization,
enabling autonomous systems to learn optimal control policies through trial-and-error
interactions with their environment. Unlike traditional optimization methods that require
precise first-principles models, RL agents can learn directly from operational data or simu-
lations, making them particularly valuable for complex processes that are difficult to model
analytically. In manufacturing, RL algorithms such as Deep Deterministic Policy Gradient
(DDPG) and Twin Delayed DDPG (TD3) have demonstrated remarkable capabilities in op-
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timizing transfer lines and flexible manufacturing systems, achieving significant reductions
in inventory levels while maintaining high throughput rates. These systems can handle
state spaces with dimensions previously considered intractable for conventional optimiza-
tion techniques, learning to balance production scheduling, maintenance operations, and
quality control in dynamic environments [85].

The integration of RL with digital twin technology represents a particularly powerful
paradigm for industrial optimization. By training RL agents in high-fidelity virtual replicas
of physical processes, manufacturers can safely explore optimal control strategies without
risking actual production systems. In plastic injection molding, for instance, Proximal
Policy Optimization (PPO) algorithms have been deployed to continuously adjust critical
parameters such as mold temperature, fill time, and injection pressure to maintain product
quality despite material variations and machine wear. Similarly, in chemical processing,
actor—critic architectures have shown 9.6% improvement in annual profit by dynamically
optimizing reactor conditions in response to fluctuating commodity prices. These RL-based
Real-Time Optimization (RL-RTO) systems reduce computational overhead by up to 87.7%
compared to conventional nonlinear programming approaches, while maintaining robust
performance across diverse operating conditions [86,87].

For problems with discrete action spaces, Q-learning and its deep variant Deep
Q-Networks (DQNs) provide effective solutions for operational decision-making. These
value-based methods have been successfully applied in production scheduling and inven-
tory management, where agents learn optimal policies for task sequencing and resource
allocation. The combination of discrete Q-learning for high-level decision-making with con-
tinuous control algorithms like DDPG for parameter optimization creates comprehensive
hierarchical control architectures that can address both strategic and tactical optimization
challenges in complex industrial environments.

5.4.6. Specialized Applications: Soft Sensors and Dimensionality Reduction

Two particularly impactful applications of ML in industrial settings are soft sensors
and dimensionality reduction.

e  Soft Sensors: These are mathematical models that estimate parameters which are
difficult to measure directly (e.g., real-time chemical concentration) using data from
other, more affordable sensors (e.g., temperature, pressure). Data-driven soft sensors,
which build models using regression, ANNs, or SVM to relate input data to a target
parameter, are a promising area [112-114]. This is closely related to the problem of
system identification, where ML also shows significant promise [100,115]. For example,
Curreri et al. [116] used transfer learning with RNN and LSTM-based soft sensors,
achieving near-optimal performance on a target industrial process while reducing
design time by over 100 h compared to full re-training.

e Dimensionality Reduction: Industrial processes often generate vast amounts of data.
Dimensionality reduction simplifies models, accelerates training, and improves in-
terpretability by preserving key information while reducing the number of features.
Methods like PCA, t-distributed stochastic neighbor embedding (t-SNE), and AEs
are used for sensor data analysis, failure prediction, and quality control, as they help
extract relevant parameters and reduce noise.

6. Limitations and Prospects for the Use of Al Data in Industry

The introduction of Al into I4.0 offers significant opportunities to optimize processes,
improve productivity, and reduce costs. However, despite progress in this area, there
are technical and organizational limitations that may slow down or even prevent the
successful implementation of Al. At the same time, the prospects for the use of Al data
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in industry remain promising, especially given the development of new technologies and
methodologies. In this section, we review the key limitations and ways to overcome them,
as well as the prospects for the use of data for Al in the context of 14.0.

6.1. Limitations of the Use of Data for Al in Industry and Possible Ways to Overcome Them

One of the key challenges faced by industrial enterprises is data heterogeneity. Data
come from different sources such as sensors, IoT devices, ERP, and SCADA systems, and
can have different formats, update rates, and levels of detail. This makes it difficult to
integrate and utilize them in a single system. Both industry standards for data formats
and universal integration tools such as ETL processes can be applied to solve this problem.
In strategically important industries such as energy, metals, and engineering, developing
industry standards can greatly simplify data integration between companies. For industries
with more flexible requirements or low levels of digitalization, the use of ETL processes
may be more appropriate as it allows for rapid adaptation to change. Hybrid solutions that
combine industry standards for basic data and ETL processes for non-standard sources can
also be effective.

Another major challenge is poor data quality, which can lead to incorrect forecasts
and decisions, causing significant financial and operational losses. Investments in more
accurate sensors and monitoring systems, as well as data preprocessing techniques such as
filtering and interpolation, can be used to improve data quality at the data collection stage.
In industries where data quality is critical, emphasis should be placed on state-of-the-art
equipment. For small and medium-sized enterprises, data preprocessing methods can be a
temporary solution to start implementing Al without significant costs. The development
of software solutions for data preprocessing can also reduce dependence on imported
equipment and stimulate the development of local IT solutions.

Many industrial processes require real-time data processing, which creates additional
complexities. Processing large amounts of data in real time requires significant computing
resources, which can be difficult for small enterprises. Edge computing allows data to
be processed closer to the source of data generation, reducing latency and network load,
which is especially important for large enterprises with distributed infrastructure. For
SMBs, cloud platforms can be a more affordable solution, offering flexibility and scalability
without the need for significant upfront costs. The combination of edge computing for
mission-critical processes and cloud platforms for less resource-intensive tasks can be a
balanced approach that takes into account both technical and economic aspects.

Thus, overcoming the limitations associated with the use of data for Al in industry
requires an integrated approach that includes data standardization, data quality improve-
ment, and the application of modern technologies for real-time processing. These mea-
sures can contribute to the successful implementation of AI and unlocking its potential
in industry.

6.2. Prospects for the Use of Al Data in Industry

Despite current limitations, the prospects for the use of data for Al in industry remain
extremely promising. One of the key prospects is the development of digital twins—virtual
models of physical objects that can simulate equipment behavior, predict changes, and
optimize manufacturing processes. The question is how to accelerate the adoption of digital
twins, given the complexity of creating and maintaining them.

To navigate the inherent complexity and financial constraints of digital twin adop-
tion, small and medium-sized enterprises (SMEs) must prioritize a focused and strategic
approach to data management [117-119]. Key initial priorities should include:
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e  Start with a Critical Asset: Focus on a single, high-value piece of equipment rather
than a full production line to demonstrate value and manage scope.

e  Ensure Foundational Data Quality: Prioritize the collection of clean, consistent, and
time-synchronized data from a few critical sensors over amassing large volumes of
unstructured data.

e  Establish Robust Data Integration: Build a simple, reliable, and automated pipeline
from the asset to a central storage (e.g., a cloud database) to ensure the digital twin
receives a live, trustworthy data feed.

This start small, focus on quality strategy allows SMEs to build a scalable foundation
without being overwhelmed.

Another important prospect is knowledge automation. Al not only automates pro-
cesses, but also creates new knowledge based on data analysis, which contributes to a better
understanding of manufacturing processes and the development of innovative technologies.
However, integrating these techniques into existing processes remains a challenge.

Integration with cloud technologies also opens up new opportunities. Cloud platforms
provide powerful tools for storing, processing, and analyzing data, as well as scalability for
Al solutions. The main challenge here is ensuring data security and privacy.

The development of IoT and edge computing provides more and more data for real-
time analysis, enabling better monitoring and management of production processes. The
widespread adoption of such technologies contributes to improving production efficiency
and opens up new horizons for industry. Processing multidimensional data in an IloT
network requires coordination across multiple sources. The challenge lies not only in
transmitting data but also in ensuring its coherence for decision-making. Fundamental
research, such as [120,121], shows that consistent communication between remote network
components is achieved through coherence. This principle can be applied to the design
of data architecture for digital twins, where various modules (e.g., physical model, wear
model, planning system) must be synchronized to form a coherent and accurate picture.

Finally, beyond individual ML models, the next evolutionary step in industrial Al lies
in the development of autonomous Al agents [122]. These are sophisticated systems that
perceive their environment through data streams, make decisions using Al models, and
execute actions to achieve specific manufacturing goals, often operating with a significant
degree of autonomy. In the context of Industry 4.0, Al agents can orchestrate complex
processes by integrating multiple capabilities. For instance, an agent could continuously
monitor sensor data via a CNN-based visual inspection system, analyze temporal patterns
using an LSTM for predictive maintenance, and then invoke a reinforcement learning
policy to dynamically re-schedule production tasks on a digital twin before a potential
failure occurs [123]. This moves the paradigm from isolated Al predictions to closed-loop,
intelligent control [124].

The implementation of such agents hinges directly on the foundational themes of this
review: high-quality, well-integrated data is the agent’s perception; robust, validated ML
models form its decision-making core; and secure, reliable data pipelines enable its action.
Therefore, the data management and quality assessment frameworks discussed herein are
not merely supportive but are essential prerequisites for the deployment of effective and
trustworthy Al agents in industrial settings.

7. Conclusions

The integration of Al stands as a cornerstone of the 14.0 paradigm, presenting a trans-
formative potential to enhance manufacturing productivity, optimize processes, and drive
down operational costs. However, this review demonstrates that the path to successful Al
implementation is critically dependent on overcoming fundamental data-related challenges.
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The heterogeneity of industrial data sources, persistent issues with data quality, and the
demanding requirements for real-time processing remain significant hurdles.

To navigate this complex landscape, a holistic and strategic approach is essential.
This includes the rigorous standardization of data formats and protocols, the adoption of
modern data processing frameworks (e.g., for stream processing and edge computing), and
targeted investment in sensor infrastructure and connectivity. Furthermore, robust data
governance policies encompassing security, lifecycle management, and continuous quality
assessment are not ancillary but central to building a reliable data foundation.

Looking forward, the trajectory of industrial Al points toward even greater integration
and intelligence. We identify three key frontiers for future development:

e  Proliferation of Digital Twins: The evolution from static models to dynamic, self-
learning digital twins will enable real-time simulation, predictive what-if analysis, and
autonomous optimization of physical assets.

e Rise of Knowledge Automation and Generative Al: Beyond predictive analytics, Al
systems will increasingly codify expert knowledge and generate novel process opti-
mizations, shifting their role from decision-support to proactive decision-making.

e  Ubiquitous Cloud-Edge Integration: The maturation of hybrid cloud-edge architec-
tures will seamlessly distribute computational load, facilitating scalable Al deployment
while ensuring low-latency control for critical operations.

In essence, the future industrial enterprise will be characterized by a tightly coupled,
data-driven feedback loop between the physical and digital worlds. While technological
advancements continue to be crucial, the ultimate differentiator for competitiveness is an
organization’s ability to cultivate a data-centric culture and master the entire data lifecycle,
from sensor to insight.
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Abbreviations

AE Autoencoder

Al Artificial Intelligence

ANFIS Adaptive Neuro-Fuzzy Inference System

BIRCH Balanced Iterative Reducing and Clustering using Hierarchies
CRM Customer Relationship Management

CRISP-DM  Cross-industry Standard Process for Data Mining
DBSCAN Density-based Spatial Clustering of Applications with Noise

DDPG Deep Deterministic Policy Gradient
DL Deep Learning

DQN Deep Q-Network

ELT Extract, Load, andTransform

ERP Enterprise Resource Planning

ETL Extract, Transform, and Load

14.0 Industry 4.0

TIoT Internet of Things

IIoT Industrial Internet of Things

ICA Independent Component Analysis
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LSTM Long Short-Term Memory

MES Manufacturing Execution System

ML Machine Learning

NCS Networked Control System

OPCUA Open Platform Communications Unified Architecture
PCA Principal Component Analysis

PPO Proximal Policy Optimization

RL Reinforcement Learning

RL-RTO RL-Based Real-Time Optimization

RC Reservoir Computing

RMSE Root Mean Square Error

RNN Recurrent Neural Network

SCADA Supervisory Control and Data Acquisition
SME Small and Medium-sized Enterprise

SMB Small and Medium-sized Business

SSL Semi-supervised Learning

SVM Support Vector Machine

TD3 Twin Delayed DDPG

t-SNE t-distributed Stochastic Neighbor Embedding
VAE Variational Autoencoder

WSAN Wireless Sensor and Actuator Network
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